Wikia

Yeni Wiki

Matematik Tarihi

Talk0
56.471pages on
this wiki
  • Matekatik Tarihine Genel Bir Bakış

Avrupa'da Analitik Geometri

Descartes ve Analitik Geometri Çoğu Batılı matematikçiler; analitik geometriyi, Fransız matematikçi ve filozofu René Descartes (1596 - 1650) ile başlatırlar. Bu konuda denir ki: Descartes cebiri geometriye soktu ve analitik geometriyi kurdu. Descartes'in kurduğu analitik geometri, zihiniyet bakımından eski Yunanlıların, geometri yardımıyla aritmetiği kavramak istemelerinin tam tersine olarak, geometriyi aritmetik ve cebirle sistemleştirip kavramadan çıkmıştır.

Geometrik sorunlar, ancak cebrik bir incelemeye müsait oldukça analitik geometride yer alırlar. Descartes'in 1637 yılında yayımlanan La Géométri'de bulunan analitik geometri konuları, Descartes'ten 1000 yıl daha önceki yıllarda yazılmış, geometri ve cebir kitaplarında vardı. Descartes önceki yıllarda bilinen, analitik geometri konularını müstakilleştirmiş ve kısmen de genişletmiştir. Descartes; bir doğru üzerinde, başlangıç olarak aldığı, bir noktanın, sağında pozitif, solunda da negatif büyüklükleri göstermeyi esas alan geometrik bir anlam vermiş ve cebir ifadeleri içinde göstermeyi başarmıştır.

Aritmetikten Matematiğe

Matematiğin; en geniş ve en iyi bilinen dalı aritmetiktir. Aritmetikte, çoğu zaman deney ve muhakeme ile sonuçlar elde etmek mümkündür. Matematik ise, tümden gelime dayalı, daha zor problemleri çözmede geleneksel matematikle birlikte kullanılır. Yüzyıllar boyu süregelen gelişmeler ve bunun sonucu olarak matematiğin kapsamı, insanların düşünce sınırını aşmıştır. Aritmetik, matematiğin çeşitli dallarından biridir.

Bugünkü matematik, 544 dala ayrılmıştır. Bunlardan birkaçının daha fazlasının hakkında gelebilecek bir matematikçi düşünülümez. Bu 544 daldan, herhangi birinin iyice incelenmesi dahi, bir matematik dehasını, bütün ömrü boyunca meşgul edebilir.Öyleki; matematiğin hepsini, belli bir sürede bir kimsenin bilmesi ve öğrenmesi mümkün değildir. Çünkü, matematik üçyüz yıldır hızla gelişmekte, aynı zamanda da derin ve geniş konuları içermektedir. Ayrıca, yılın her gününde, bir insanın bir günde öğrenebileceğinden çok daha fazla, yeni matematik buluşları ortaya konmaktadır. Gerçekten, son elli yıl içinde keşfedilenler, insanlığın varlığından bu yana geçen binlerce yıl içinde bulunanlardan kat kat daha fazladır.

Bizans'ta Cebir

Bazı kaynaklar, Bizans'ta ileri bir matematiğin varlığı hakkında geniş bilgi verirler. Ortalama 1000 yıllık hayatı olan Bizans'in, matematik tarihinde, Eski Yunan matematiğini, ilerletip geliştirmesi bakımından, pek parlak bir duruma sahip değildi. Bu devir matematikçileri olarak belirtilen ve aynı zamanda Nikomedya (İzmit) rahibi olan Masimus Planudes (İzmit 1260 - İstanbul 1310), Diofantos' un birinci ve ikinci kitaplarına dair sadece tefsir yazabilmiştir. M. Planudes'in en çok bahsedilen eseri, 1300 yılında yazdığı Hint Hesabı'dır. Planudes; bu eserinde, karekök alma kuralını, Diafantos'un eserini esas almak suretiyle Hint metodunu tatbik etmişti.

14. yüzyılın ikinci yarısından itibaren, 15. yüzyılın ilk yarısına kadar (İstanbul'un fethi yıllarına kadar), Bizans matematiğinde bilim tarihinde isim bırakmış matematikçilere rastlanılmaz. Bu tarihlerde, siyasal olaylar yüzünden, bilim ihmal edilmiştir. Bu tarihlerin ilginç bir olayı, İstanbul'da gizli kalmış özel kişisel kitaplıkların dışında, elyazması ne kadar eser varsa İtalya'ya götürülmüştür. İstanbul'da el yazmalarına ait hiç bir eser bırakmamışlardır. Givanni Aurispa'nin (1369-1460) Bizans'tan Venedik'e 238 el yazması eser götürdüğü tarihi bir olay olarak bilinmektedir.

Bizans matematiğinin durumunu, ayrıntılarıyla incelemiş olan Hamit Dilgan Matematik Tarih ve Tekamülüne Bir Bakış adlı eserinde şöyle yazar: Bizans'ta tam anlamıyla büyük matematikçi yetişmemiştir. Bir çoğunun eserleri (birkaçı müstesna) mütevazi ve basittir, Hatta bazılarının eserlerindeki problemlerin, yazarları tarafından anlaşılamadığı seziliyor... Bütün bu hususlar, Eski Yunan dehasının gerilemiş ve tükenmiş olduğuna canlı birer örnek teşkil eder. Şu kadar var ki, Bizans matematiği, aynı devrelerdeki Roma matematiğinden çok daha ileri bir durumda olmakla beraber, Doğu İslam Dünyası Matematiğine nazaran çok geri kalmıştı.

Cebirin Avrupa'da Görülmesi

Matematik tarihi eserleri; yazılan ilk cebir kitabının Hârizmî'nin el-Kitabü'l Muhtasar fi Hesabi'l Cebri ve'l Mukabele adlı eseri olduğunu belirtir. Batılı yazarların da belirttikleri gibi, İspanya yoluyla Avrupa'ya giren ilk cebir kitabı, Harezmi'nin adını belirttiğimiz eseridir. Bu eserde görülen çözüm yolları, İtalyan matematikçi, Leonardo Pisano (1170 - 1250) tarafından yazılmış Liner Abacı (Hesap Metodu) adlı kitap ile 1202 yılında İtalya'ya girmiştir. Bu eser, Batılı matematikçilerden; Passioli, Tartiaglie ve Cardon'un çalışmalarına temel eser olmuştur.

Öyle ki, bu matematikçilerin eserleri incelendiğinde, Hârizmî'ye ait izlerin varlığını görmek mümkündür. Hârizmî'nin eseri ile yukarıda adlarını belirttiğimiz matematikçilerin eserlerini ayrıntılarıyla incelemiş olan Hamid Dilgan bu konu ile ilgili olarak aynen şunları söyler: Batılı yazarlar cebiri, Cebri ve'l Mukabel adlı eserin Latince tercümesinden öğrenmişlerdir. Adnan Adıvar ise bir makalesinde şunları yazar: G. Libri tarafından, 1915 yılında New York'ta yapılan tercümenin eski Latince nüshanın üzerinde İspanya'da bulunan Sagovia şehrinin adı 1145 yılında yazılı olduğunu belirterek bu tarihe, aynı zamanda Avrupa'da Cebirin Doğuş Tarihi olarak bakmak mümkündür.

Harezmi'nin bu eseri, temel eser kabul edilerek bu konuda, Avrupa'da cebirle ilgili yeni eserler yazılmış ve Hârizmî adı ile eserinin adı kısa sürede yayılmaya başlamıştır.

Eski Hint Dünyasında Cebir

İçinde bulunduğumuz yüzyılın araştırmaları; Eski Hint Dünyası'nda özellikle 6. , 7. , 9. ve 12. yüzyıllarda, matematikle ilgili olarak, çağının bilgi seviyesinin üst düzeyinde ilginç bilimsel çalışmaların varlığını ortaya koymuştur. Eserleriyle adları zamanımıza kadar gelebilen, Hint matematikçileri, bilim tarihinde kendilerini etkin bir şekilde göstermektedir. Bunlardan belirttiğimiz yüzyıllar içinde yaşamış olanlardan: Brahmagupta, Aryabatha, Mahavra ve Bhaskara adlarını belirtebiliriz. Kaynaklar; Brahmagupta'nın Kutakhadyaka adlı eserinde de, münferit cebir konularının görüldüğünü, ancak bunların düzenli ve ayrıntılı olarak, cebir konularını kapsayan sistematik bir eser olmaktan uzak olduğunu belirtir. Buraya kadar; adlarını belirttiğimiz; Diofantos'un "Aritmetika" ve Brahmagupta'nın Kutakhadyaka adlı iki eserde, ikinci derece denklemlerin çizim yoluyla (geometrik yolla) çözümlerinden bahis olmadığını ve mevcut bilgilerin de Mezopotamya menşeli olduğunda kaynaklar hemfikirlerdir.

Eski Mısırlılarda Aritmetik

Bilinen en eski sayma sistemlerinden biri, Eski Mısırlılar'a ait olanıdır. Eski Mısırlılar'ın kullandıkları resim yazısının (hiyeroglif) başlangıç tarihi, M.Ö. 3300 yılına kadar gider. Böylece, Mısırlılar yaklaşık 5300 yıl önce, milyona kadar olan sayıları kapsayan bir sistem geliştirmişlerdir. Eski Mısırlılar'a ait sayma sistemi, ilkçağ mağara insanının önceleri kullandığı sayma sisteminin gelişmiş şeklidir.

Eski Mısır aritmetiği hakkında bildiklerimiz, zamanımıza kadar intikal etmiş papirüs tomarlarından elde edilmektedir. Bugün bu papirüsler; bilim tarihinde M.Ö. 1900-1800 yılları için adlandırılan, kahun ve berlin papirüsleri ile, M.Ö. 1700-1600 yılları için adlandırılan Hiksoslar devrinden kalma Rhind ve Moskova matematik papirüsleridir. Mısır matematiği hakkındaki diğer kaynaklar, birkaç parşömen tomarı ile kil ve tahta tabletlere dayanmaktadır. Eski Mısır'da rakam ve sayılar bazı sembollerin yan yana gelmesiyle ortaya çıkıyordu. Bütün rakamlar, 7 değişik şeklin biraraya gelmesiyle ifade ediliyordu. Örneğin, 1 için yukardan aşağıya düşey bir çizgi, 10 için at nalı şekli, 100 için çengel işareti, 1000 için lotus çiçeği, 10000 için işaret parmağı, 100000 için tatlı su balığı, 1000000 için tatlı su balığı şekillerini kullanmışlardır ve yazım biçimi de sağdan sola doğru ifade ediliyordu.

Sayıları da, sembollerle göstererek bir sayı sistemi geliştirmişlerdir. Eski Mısırlılar 1'den 1 milyona kadar olan sayıları göstermek ve yazmak için değişik semboller kullanmışlardır. Örneğin, 9 sayısını ifade etmek için, 9 adet düşey çizgi; 90 sayısını ifade etmek için, 9 adet at nalı, kullanmak gerekiyordu.

Eski Mısırlılar, bu sembolleri, gerektiğinde tahta, ağaç ve taş üzerine de oymuşlardır. Bu rakamları, birkaç kez kullanarak, istenilen sayıları göstermişlerdir. Bu sistemde; gruplamalar onarlık olduğundan, sistem onluk sistemdir. Eski Mısır Sistemi, aşağıda belirtilen özelliklerinden dolayı, mağara insanının kullandığı sistemin geliştirilmiş şekliydi.


Bir kümede, bulunan şeylerin toplam sayısı, sadece bir tek sembolle belirtilmiştir. Örneğin, 10 sayısının bir topuk kemiği sembolü ile belirtilmesi gibi... Diğer sayıları göstermek için, aynı semboller tekrarlanmıştır. Bu sistemde onluk gruplar esas alınmıştır. On düşey çizgi, bir topuk kemiği sembolünü, en topuk kemiği sembolü de, bir çengel sembolüne eş değerdir. Bu şekilde devam eder.

Eski Mısırlılar sıfır kavramını da bilmiyorlardı ve sıfırı gösterecek bir işaret kullanmamışlardı. Fakat, sayıları çarpma ve çıkarma tablolarına, ehramların yapılış tarihinden itibaren sahip bulunuyorlardı.

Afet İnan Eski Mısır Tarih ve Medeniyeti adlı eserinde şunları yazar:

Mısır'da rakamların yazılışını çok eski zamanlardan itibaren bulmak mümkündür. IV. sülale zamanında (M.Ö. 2778 - 2413) Methe'nin mezarında bulunan yazılarda ölçü sistemlerinin mükemmel bir şekilde tespit edildiği de anlaşılıyor.

Kaynaklar, XII. sülale zamanından (M.Ö. 2000-1787) kalma, bir takım aritmetik problemlerini açıklayan papirüsler ele geçtiğini, bunların bugün, Kahun, Moskova, Berlin ve Rhind papirüsleri diye adlandırıldığını belirtir. Afet İnan, adı geçen eserinde, bu konuda şu bilgileri de verir: Bu papirüs metinlerinde, birçok matematik ve geometrik esaslar, ilmi bir şekilde konulmuştur. Bilhassa, Rhind papirüsü, Mısır matematiğinin bir abidesi sayılır. Bu türlü vesikalarda, ölçülerin ne gibi esaslara göre yapılacağı, örneklerle mevcuttur. Ehramlar, doğrudan doğruya bir geometrik problemin tatbik edilmiş şeklidir. Bunlardan başka, diğer yapılar da bu hesaplara göre yapılmıştır. Mısırlılar Pisagor teoreminin yalnız 3, 4, 5 özel halini yani kenarları 3, 4, 5 olan bir üçgenin, bir dik üçgen olduğunu biliyor ve bundan inşaat ve ölçü işlerinde faydalanıyorlardı.

Hemen belirtmek gerekir ki, Eski Mısırlılar'ın hayatı, Nil Irmağı'nın yükselme ve alçalmasına bağlı olduğundan, bu durumu daima ölçmek ve kontrol etmek lazımdı. İşte bu hesaplar ve arazi ölçülerinden dolayı, Eski Mısır'da aritmetik ve geometrik ilimler büyük gelişme göstermiştir. Çünkü suyun yükselme ve alçalmasıyla, şahıslara ait arazi üzerindeki sınırlar bozuluyor ve bunları belirli ölçülere göre, yeniden tespit etmeleri gerekiyordu. Bu sebebten büyük bir itina ile gerekli ölçme ve hesaplamalar yapılmıştır.

Aydın Sayılı, Mısırlılar'da ve Mezopotamyalılar'da, Matematik, Astronomi ve Tıp adlı eserinde bu konuda şunları yazar: Mısır rakamları, oldukça ilkel bir vasıf taşımalarına rağmen bunlar tarihte bilinen ilk ve en eski rakamlar arasında bulunmakla, büyük bir değer ve önem taşırlar. Çünkü bunlar belirli sembollerle ifade edilmesi, zihniyet ve düşüncesinin ilk örneklerinden, belki sadece Sümerliler istisna edilirse, en eskisini teşkil etmektedir.

Eski Mısırlılarda Cebir

İnceleyebildiğimiz kaynaklarda; Mısırlılarda, bugünkü cebirin herhangi bir şeklinin varlığına dair, kesin bilgiler görülmemektedir. Ancak; Mısırlılarda, bugünkü cebir konularına benzeyen, oldukça ilkel cebirin varlığı görülmektedir. Bu konuda aha hesabı adı verilen bir hesaplama türüne rastlanılmaktadır. Bu hesaplama türü hakkında, Aydın Sayılı Mısırlılar'da ve Mezopotamyalılar'da Matematik, Astronomi ve Tıp adlı eserinde Berlin ve Rhind Papirüslerine dayanarak şu bilgiyi vermekte;

Aha kelimesi, grup ya da miktar anlamına gelmektedir. Böyle adlandırma, bir metot görüşü olarak yapılmış olmakla beraber, aha hesaplarında, Yanlış ve Deneme Yoluyla Yoklayarak Çözüm metodu kullanılmış olduğu görülmektedir. Ayrıca bu usulle, bazı çözümler cebiri hatırlatıyor. Adı geçen eserde; bu tür hesabın nasıl yapıldığına dair, açıklamalı iki örnek verildikten sonra; müsteşrik S. Gantz'a atfen altı örnek belirtmektedir. Bunlar:


x/y = 4/3 ; xy = 12

xy = 40 ; x = (5/2)y

xy = 40 ; x/y = (1/3) + (1/15) = 2/5

10xy = 120 ; y = (3/4)x

x2 + y2 = 100 ; y = (3/4)x

a2 + b2 = 400 ; a = 2x ; b = (3/2)x

Hemen belirtmek gerekir ki; bu örnekler, Mısırlıların aha hesabında yaptıklarının, bugünkü cebrik düşünceye göre düzenlenmiş gösterim ve tertip şekilleridir.

Yukarıdaki altı tip örnekte görülebileceği gibi, problemler hep özel durumları temsil ediyor. Ancak, Aydın Sayılı adı geçen eserinde, bu konuda : Mısırlı matematikçinin zihninde belli çözüm yollarının ve genel formüllerin bulunduğuna şüphe yoktur. Örneğin aha hesaplarıyla ilgili papirüslerde, herhangi bir metot söz konusu edilmemesine rağmen, bunlarda özel bir metoda uyulduğu gayet sarih bir şekilde görülmektedir ... Problemlerin pedagojik amaçlarla bu şekilde tertiplenmiş oldukları söylenebilir.

Eski Mısırlılarda Geometri

İnceleyebildiğimiz kaynaklar; Mısır matematiğinde seked ve sek kelimelerinin, bir açının kotanjantına denk anlam ifade etmesinden hareket ederek, trigonometrinin, başlangıcını eski Mısırlılara kadar götürmenin gerektiğini belirtir. bu konuda Aydın Sayılı Mısırlılar'da ve Mezopotamyalılar'da Matematik, Astronomi ve Tıp adlı eserinde şunları yazar: Mısır'da seked dışında, bu konuda herhangi bir gelişmeye şahit olmuyoruz. Seked'e benzeyen ya da onunla aynı olan bir kavramla Mezopotamya Matematiğinde de karşılaşılmakta olduğu ve trigonometrinin başlangıcını Mısırlılara götürmek isabetli düşünce sayılmaz. Mısır Geometrisinin, Doğru Geometrisi olarak vasıf taşıdığını belirterek, müşterik Gandz'a atfen de Mısır'da Açı Geometrisinin mevcut olmadığını belirtir.

Eski Yunan'da Aritmetik

Kaynaklar, aritmetik denilince, temel bilgilerin, eski Yunan, Roma çağı aritmetikçisi Diofantos (325-400) ile başladığını belirtir. Bilinen tarihi bir gerçek şudur: Bugünkü aritmetiğin, temel bilgilerinin, ilkel anlamda da olsa, Mezopotamya'da var olduğu anlaşılmıştır. Pisagor teoreminin hem özel hem de genel halinin, Babil çağında bilimiş olduğu, Mezopotamyalılardan, zamanımıza intikal eden belgelerden görülmektedir. Tarihçi Heron da Yunan matematiğinde, açık bir Mezopotamya matematiğinin etkisini bulunduğunu belirtir.

Konunun, diğer bir gerçek yönü de şöyledir: Yunanlılar, solon devrinden itibaren, hristiyanlıktan önceki yüzyılın ortalarına kadar, sayı yazısı olarak, sayı kelimelerinin ilk harflerini kullandılar. Bu durum sonucu; birçok birler, onlar ve yüzler meydana getirilmekte, dolayısıyla da sayı yazısı ile sayı dili arasında açık bir boşluk meydana gelmektedir. Ancak, miladi 500. yılında 24 harf ile sami menşeli 3 ek işaret kullanan yeni bir sayı sistemi ortaya çıktı.

Eski Yunan'da Cebir

Çoğu kaynaklarda; cebir denildiğinde, Eski Roma çağı Yunan matematikçisi Diofantos'un (225-400) adından bahsedilir. Diofantos'un Aritmetika adlı bir eseri mevcut olup, bu eserde sistematik olmamak üzere, münferit bazı cebir konuları ile birlikte, ikinci derece denklemlerin çözümü görülmektedir. Ancak, Diofantos devri Yunan matematiği, bazı harf ve semboller ile ifade edilmekte olduğundan, Diofantos'un yukarda adını belirttiğimiz eseri, Hârizmî'deki cebir işaretleri ve sistemlerinin oynadığı rolden mahrum olması bakımından gerçek anlamda düzenli ve disiplinli bir cebir kitabı olmaktan uzaktır. Kaldı ki; Hârizmî'nin Cebri ve'l Mukabele adlı eserinde görülen çözüm yolları, tamamen geometrik düşüncelerle temellendirilmiş olup, bu tür sistematik çözümü de, cebire ilk ithal edenin, Harezmi olduğu son yüzyıl içinde yapılan araştırmalarla ortaya konulmuştur.

Diofantos'ta görülen ikinci derece denklemlerin çözüm metotları, Mezopotamyalılar'ınkine benzemektedir. Aydın Sayılı adı geçen eserinde : Mezopotamyalılarda görülen denklem çözme geleneklerinin, Diofantos'ta devam ettiği görülmektedir. Demek ki Diofantos'taki şekliyle Yunan cebri Mezopotamya cebiririn hemen hemen, doğrudan doğruya bir devamını, Abdülhamit İbn-i Vasi Türk (? - 847) ile Hârizmî cebri ise tadil edilmiş bir şekildeki devamını teşkil etmektedir.

Eski Yunan'da Geometri

Eski Yunan matematikçilerinden Demokrit'te, gelişmiş bir geometri bilgisi görülmektedir. Ancak kaynaklar; Demokrit'in Eski Mısır matematiği ile temasta olduğunda hemfikirdir. Thales, ikizkenar üçgenin taban açılarının eşit olduğunu bildiği, ancak üçgenin iç açılarının 180 derece olduğu yolundaki bilgilerin Thales'e ait olmadığı anlaşılmıştır. Pisagor, geometri çalışmalarında, güney İtalya'da Kroton'da okullar açmış ve geometrinin gelişmesini sağlamıştır. Öklid, Elementler adlı geometri kitabını yazmakla ün yapmıştır. Bu eserdeki geometri bilgileri 2000 yıl kadar, fazla bir değişikliğe uğratılmadan, geometri derslerinde okutulmuştur. Bu eserin bazı kısımları, günün ihtiyaçlarına cevap vermek için, 1700 yılından itibaren modernleştirilmiştir. Bugünkü geometride bilinen birçok bilgiler, Elementler'de vardır.

Kaynaklar; geometrinin önce Eski Mısır'da başladığını, Eski Yunanlılar'ın geometriyi Eski Mısır'dan öğrenmiş olduklarını belirtmektedir. Tarihçi Herodot (M.Ö. 485-425), geometrinin Eski Mısır'da başladığını ve arazi ölçüsü ihtiyacından doğmuş olduğunu belirtir. Aydın Sayılı: Bunun gerçeğe uygun olduğunu, yani bölge bir menşeden başlayarak, geometrinin Eski Mısır'da bir ilim haline geldiğini kabul edebiliriz der. Eski Yunanlılar'ın, matematikte ve özellikle geometri bakımından, Eski Mısırlılar'dan geniş şekilde yararlanmış oldukları anlaşılmıştır. Bu durumda, Eski Yunanlılara atfedilen geometri bilgileri hakkında şu görüşü belirtebiliriz:

Eski Yunanlılar, Eski Mısır yörelerini uzun yıllar dolaşmışlar. Bu yöreleri ilk dolaşan ve Eski Yunan'ın ilk bilgini sayılan Thalestir (M.Ö. Miletes 640 ? - 548 ?) .Thales'ten sonra Pisagor'un ve Öklid'in bu yöreleri uzun yıllar dolaştıkları tarihi bir gerçektir. Bu bilginler, buralardan elde ettikleri geometri bilgilerini almışlardır. Ayrıca, geometriyi sistemli ispatlara dayanan müstakil bir bilim haline getirmişlerdir. Eski Yunanlılar'ın başarısı, geometriyi sistemleştirip, müstakil bir matematik dalı haline getirmiş olmalarıdır.

Eski Yunan'da Trigonometri

Trigonometri'de: Herhangi bir ügende, dik kenarların kareleri toplamı, hipotenüsün karesine eşittir şeklinde temel bir teorem vardır. Bu teoremin adı Pisagor teoremi olarak bilinir. Gerçekte; bu teoremin varlığı, Pisagor'dan ortalama 2000 yıl kadar önceleri, Eski Mısır ile Mezopotamyalılar tarafından Babil çağında bilinmekte idi. Mezopotamyalılar, bu teoremin, hem özel hem de genel şeklini biliyorlardı. Bilim tarihi eserleri; Thales'in, Pisagor ve Öklid'in, eski Mısır ve Babil yörelerini uzun yıllar dolaşmış olduklarını belirttikleri gibi, bu bilginlerin temel matematik bilgilerini, Mısır ve Babil'den elde etmiş olduklarını belirtir. Sıfır Rakamımın Kronolojik Gelişimi

M.Ö. 3000 yılları: Eski Mısırlılar, onluk sistemi bilmediklerinden, sıfır anlamını ifade eden bir sembol (işaret) kullanmamışlardır.

M.Ö. 700-500 yılları: Mezopotamyalılar, sadece astronomi metinlerinde, sıfır anlamına gelecek, özel bir işareti sürekli olarak kullanmışlardır.

M.S. 2. yüzyıl: Eski Yunan'da, Batlamyos'un astronomi metinlerinde, Yunan alfabesinde görülen, içi boş anlamını ifade eden 0 şeklinde bir harf kullanmışlardır. Ancak, matematiklerinde, bu harfi (işareti) kullanmadıklarını, kaynaklar açık olarak belirtmektedir.

M.S. 400 yılları: Eski Hint Dünyasında, ilk defa, bugünkü ifadeyle sıfır anlamına gelen, 0 ve . şeklinde işaret (sembol) görülmeye başlamıştır.

M.S. 632: Eski Hint alimi Brahmagupta'nin astronomi ile ilgili olan Siddhanta adlı eserinde, dokuz ayrı ve sıfır rakamı ile hesap yapmayı gösteren kaideler belirtilmiştir.

M.S. 830: İslam Dünyasının önde gelen matematik alimi Harezmi tarafından, dokuz ayrı rakam dahil sıfır rakamı ile birlikte aritmetik işlemlerin nasıl yapılacağı açık olarak gösterilmiştir.

M.S. 1100 yılları: Avrupa matematik dünyasında, yaygın olarak kullanılmaya başlar.

Matematik Nasıl Doğdu, Gelişti?

İlk matematikçi belki de sürüsündeki hayvanları saymaya çalışan bir çobandı. Büyük bir olasılıkla da ilk bulunan sayı çok dur.Sonra 2, daha sonrada 1 bulunmuş olabilir. Ama en zor bulunan 0 (sıfır) dır. 0 sayısı M.S. 7-inci yüzyılda kullanılmaya başlanmıştır. Bu belki de,insanlığın en büyük buluşudur. Sayma sisteminin ne kadar uzun sürede geliştiği,ilkel toplumlarda nasıl doğduğu, yakın zamanlarda ortaya çıkarılan birtakım ilkel kavimlerde gözlenebilmiştir:

Avustralya'da bir kavim 1, 2, 3, çok diye dört sayı biliyor fakat, bütün çocuklarını sayabiliyormuş; ilk doğan erkek çocuğun her ailede adı aynıymış, 2-inci, 3-üncü için de böyle ve kız çocukları için de aynı şeyi yapıyorlarmış. Böylece, bir çocuğun kaçıncı erkek yada kaçıncı kız çocuğu olduğunu bilebiliyorlarmış. Ama, koyunlarını sayamıyorlarmış.

Bir başka kavimde, en çok koyunu olan kişi, kavmin reisi olarak seçiliyormuş. Seçimde iki aday varsa, yan yana iki ağıldan koyunlar birer birer çıkarılıyor ve ilk tükenen seçimi kaybediyormuş.

Başka bir kavimde ise, tek ve çift kavramları varmış. Çoban koyunları her sabah ikişerli gruplar halinde ağıldan çıkarıyor ve akşam ikişerli gruplar halinde ağıla alıyormuş. Bu işlem sonucunda, tek koyun kalıyorsa, çoban tek sayıda koyunu olduğunu ve eğer tek koyun kalmıyorsa, çift sayıda koyunu olduğunu anlıyormuş.

Oldukça erken çağlarda, insanlar aynı cins nesneleri karşılaştırarak, büyüklüklerini ölçerek ve aralarında oranlar kurarak matematiğe başlamışlardır. Kemik üzerine, kum üzerine çizerek ya da, ipe düğüm atarak bir büyüklüğü belirtmeye çalışmışlardır;

Sümer çobanları her hayvanı kilden bir koni ile gösterip, bu konileri kıldan bir torba ya da, kilden bir küp içinde biriktirerek ölüm, doğum, alım, satım hesaplarını tutmuşlar.

Mezopotamya'da kent yerleşiminin karmaşık ekonomilerini düzenlemek için, küp içine koni koymak yerine, küp üzerine benzer şekiller çizilmiş. Böylece, M.Ö. 3000'e doğru ilk yazılı sayılama ile karşılaşmış oluyoruz.

Tarımla uğraşan en ilkel kabileler bile, mevsimlerle ilgili bilgileri edinmek zorundaydılar. Örneğin, eski Mısır da Nil taşkınlarının ne zaman olacağını bilmek çok önemliydi. Taşkından sonra kaybolan toprak sınırlarını yeniden hesaplamak gerekiyordu. Böylece, geometri ve astronomi gelişti.

Fenikeliler gibi tüccar-denizci toplumların ekonomileri bir muhasebe sistemi gerektirmiştir. Miras bölüşümü ve denizcilik zanaatı için aritmetiğin, geometri ve astronominin bilinmesine gereksinim vardı.

Böylece, toplumsal yaşamın gerektirdiği matematiksel gelişme belirli bir düzeye erişti. Daha sonra, matematik sadece uzmanların anlayabildiği bir meta haline geldi; İnsanlar olgularla yetinmeyip ispata yöneldiler. Bu durum, en belirgin bir biçimde eski Yunanistan'da ortaya çıktı. İspat etmenin ön plana çıkması ile matematik günümüzdeki gelişmişlik düzeyine ulaştı.

Eski Mısır'da Pitagor (Pisagor) teoremi biliniyordu. Ancak ispatı önemliydi ve ilk olarak eski Yunanistan'da ispat edildi.

Hindistan'da tüccar bir toplum vardı ve teoriden çok pratiğe önem veriliyordu. Ancak, ticarette borç problemlerinin çözümü için negatif sayılara gereksinim vardı. Böylece, bildiğimiz sayı sistemi gelişti. Dolayısıyla, Analiz ve Cebir gelişti. Bu kavramlar, daha sonra Araplar aracılığıyla Avrupa'ya geçti.

Oldukça erken çağlarda başlayan ve Babil, Asur, Mısır, Yunan uygarlıklarında genel toplumsal yaşamın gerektirdiği ölçüde gelişen matematik Avrupa'ya oldukça geç ulaşabildi. Ancak belirli bir gelişmişlik düzeyinde Avrupa'ya ulaşan matematik, 15-inci yüzyıla kadar sadece az sayıda din adamı yada filozofun elinde birer eğlence yada güç gösterisi olmaktan öteye gidemedi. 15-inci yüzyılda tam sayılarla toplama ve çıkarma, Avrupa'nın ancak birkaç üniversitesinde öğretilebiliyordu. Çarpmayı öğrenmek için İtalya'nın önemli birkaç üniversitesinden birine gitmek gerekiyordu. Geometri olarak, Öklid geometrisinin basit konuları, sadece büyük filozofların tartışma konusuydu. Bölme işlemi ise, 16-ıncı yüzyılın getirdiği bir yenilikti.

Matematikte bilim kavramı ancak 17-inci yüzyılda kullanılmaya başladı. 20-inci yüzyılın başlarında Analiz, Cebir ve Geometri belirli bir düzeye erişebildi; Kümeler Teorisi kuruldu, böylece matematik büyük bir gelişme hızı kazandı ve devam ediyor.

Türk - İslam Dünyasında Aritmetik

Aritmetikte temel işlem olarak adlandırılan; toplama, çıkarma, çarpma, bölme ve kesirli ifadelerle ilgili bilgiler, ilkel şekliyle, Eski Mısır ve Mezopotamya'da vardı. Bu bilgiler, uzun zaman aralığı içinde gelişerek, bugünkü kullanılabilir ve sistemleşmiş durumunu almıştır. Matematik tarihinde; aritmetikte, ondalık sayılarda virgül kavramı ile, tam sayı kavramında sıfır rakamının kullanılması çok önemli bir olaydır.

Bilim tarihi eserleri, ondalık sayı kavramında önemli yeri olan virgül kullanma şerefinin, 15. yüzyıl Türk-İslam Dünyası matematik ve astronomi alimi Gıyasüddin Cemşid'e ait olduğunu belirtir. Gıyasüddin Cemşid tarafından hazırlanan Risalet'ül Muhitiyye adlı eserde, aritmetik işlemlerde ilk kez virgül kullanılmıştır.

Türk - İslam Dünyasında Cebir

Objektif olarak hazırlanmış, matematik tarihi eserleri incelendiğinde, açık olarak şu hüküm görülür; Matematiğin geniş bir dalı olan cebire ait temel bilgilerin büyük bir çoğunluğu, 8. ile 16. yüzyıl Türk - İslam Dünyası alimleri tarafından ilk olarak ortaya konulmuş ve belli bir noktaya kadar da geliştirilmiştir.

İslamiyetin Başlangıç Yılları İslamiyetin başlangıç yıllarında; dini günlerin tespiti, namaz vakitlerinin belirlenmesi, takvim hazırlanması gibi dini problemlerle uğraşılmış olunduğu muhakkak ise de, o devir İslam matematikçilerinin, arazi ölçüleri, veraset hesapları, yükseklik tayini ve günlük yaşantı için gerekli pratik ölçme ve hesaplamalar hakkında bazı çalışmaların varlığı söz konusu olabilir. Hamid Dilgan; Büyük Matematikçi Ömer Hayyam adlı eserinde bu konuda şunları yazar : İslam matematiği, ancak hicretin ikinci yüzyıl ortalarında Bağdat'ta doğmuştur. Ancak bu tarihten itibaren, Bağdat'ta kurulan ve bugünkü Üniversitelere benzer kurum olan Dar-ül Hikme'de başta matematik olmak üzere, öteki bilimler hızla gelişmeye başlamıştır.

Gıyasüddin Cemşid ve Cebir Gıyasuddin Cemşid, aritmetikle ilgili ilmi çalışmalarının yanında, cebirde yüksek dereceden nümerik denklemlerin yaklaşık çözümlerine, kendi görüşü olarak ortaya koyduğu orjinal çözüm yolları ile, etkinliğini zamanımıza kadar sürdürmüştür. Bu konuda; özellikle; ax3 + x3 = bx tipindeki üçüncü derece denklemlerin çözümünde, zamanı için yeni olan çözüm yolları ortaya koymuştur.

Türk - İslam Dünyasında Geometri

Matematiğin; aritmetik, cebir ve trigonometri dallarında kurucu denecek kadar eser ortaya koyan, 8. ile 16. Türk - İslam Dünyası alimleri; geometri dalında da, temel teşkil edecek, zamanı için orijinal ve kıymetini uzun yıllar koruyan eserler ortaya koymuşlardır. İlk defa, cebiri geometriye tatbik etme fikri, ilmi metotlarla çalışan, bu devir matematikçilerinin eseri olmuştur. Bu durum, geometrinin çok kısa zamanda gelişmesini sağlamıştır. Özellikle, Eski Yunan alimlerinin ortaya koydukları geometri konularını kapsayan eserler, uzun yıllar anlaşılamamıştır. Ne zaman ki; İslam alimlerinin bu eserlere yazdıkları yorumlamalar sonucu, Öklid ve çağdaşlarının eserleri ancak anlaşılabilirlik kazanmıştır. Bunlardan;

Hârizmî ve Geometri Matematikte yeni sayılabilecek bir dal olan, analitik geometri ile ilgili eserler, analitik geometriyi, 16. yüzyıl Fransız matematikçi Descartes'in, 1637 yılında yazdığı La Geometri adlı eseri ile başlatırlar. Gerçekte, Hârizmî tarafından 830 yılında Arapça olarak yazılan Cebri ve'l Mukabele adlı eserde, analitik geometriye ait ilk bilgiler ortaya konmuştur. Hatta, Ömer Hayyam'in Cebir adlı eserinde de, analitik geometriye ait bilgilerin varlığı görülür. Analitik geometrinin Descartes'la ilgisini, şu şekilde belirtmek, gerçeğin tam ifadesi olur.

Descartes, kendisinden önceki yıllarda var olan analitik geometri bilgilerini toplayarak sistemleştirmiş ve kısmen de genişletmiştir. Müsteşrik Sigrid Hunke, analitik geometri konusunda aynen şunları yazar. Adedi çokluklarla (kemiyetlerle) geometrik çoklukların beraber yürütülmesi gerektiğine dair kesin fikir de ilk olarak, İslam ilim sahasında rastlanır ... Rönesansımızın üstatları, onun için, Yunanlılar değil, bilakis İslam Dünyası oldu. Denebilir ki; cebirin geometriye tatbikati demek olan, analitik geometriyi münferit bir geometri dalı haline getirme metotlarını ilk olarak Hârizmî tarafından ortaya konmuştur.

Trigonometrinin Avrupa'da duyulup dağılmasına etkili olanların başında gelen Sabit bin Kur-ra, geometri konularındaki çalışmaları ile de adını zamanımıza kadar sürdürmüş olan ünlü matematikçilerimizden biridir. Konikler kitabı ile Apolonyos'a serh yazdı. Huneyn bin İshak tarafından Öklid'in Elementler adlı eserine yazılan serhi, ilaveler yaparak düzeltti. Menalaus, Apolonyos, Pisagor, Archimed, Öklid ve Theodosus'un eserlerini Arapçaya tercüme etmekle, geometriye, zaman için orijinal olan, yeni bilgiler kazandırmıştır.

Ebu'l Vefa ve Geometri Trigonometri çalışmaları dışında, düzgün çokyüzlüler konusuyla da uğraşmıştır. 7 ve 9 kenarlı düzgün çokgenlerin yaklaşık çizimlerine dair yeni bir geometrik yöntem ortaya koymuştur. Kısmen Hint modellerine dayalı olarak ortaya koyduğu geometrik çizimleri, geometri bakımından önem taşır. Ebu'l Vefa'nın çizim geometrisine ait ortaya koyduğu çalışmalarına dair bir fikir verebilmek için üç ayrı problemini örnek olarak belirtelim. Bunlar:


Pergelle, daire içine, açıklığını bozmadan kare çizmek. Verilen bir doğru parçasını, pergel yardımıyla eşit parçalara bölmek. Verilen bir kare içine, eşkenar bir üçgen çizmek.

Matematik tarihi incelendiğinde; ünlü matematikçilerden, Thales, Öklid, Pisagor'un hazırladıkları eserler ve bu eserlerinde ortaya attıkları teoremler, Hârizmî, Ömer Hayyam, Sabit bin Kurra, Beyruni, Nasiruddin Tusi'nin ortaya koydukları görüşler sonucu, geometri yeni boyutlar kazanmıştır.

Türk - İslam Dünyasında Logaritma

Ülkemizde yazılan, matematik tarihi ile ilgili bazı kaynaklarda, Osmanlı Türkiyesi'nde, Logaritma ile ilgili ilk eserin, Osmanlı Türkiyesi'nin son matematikçilerinden İsmail Efendi (1730 - 1791) tarafından 1772 yılında yazıldığı belirtilir. Konu ile ilgili ayrıntılı bilgi veren Cevdet Paşa Tarihi'ndeki, bilgilerin yalnış değerlendirilmesi sonucu da, memleketimizde yayınlanan bazı eserlerde: İsmail Efendi logaritmayı icad etti şeklinde bilgiler verilir.

Logaritma ile ilgili ilk eserin, İskoçyalı John Napier (1550 - 1610) tarafından yayımlandığı bilinen tarihi bir gerçektir. Bu durumda, logaritma ile ilgili bilgiler, İsmail Efendi'den ortalama 80 yıl kadar önce Avrupa matematik dünyasında bilinmekte idi. Konuya biraz daha açıklık getirmek için; tarihi gelişimi içinde, ayrıntıları ile incelenmiş olan Bursalı Mehmet Tahir Efendi'nin Osmanlı Müellifleri adlı eserinde, şu bilgiler vardır: Üçüncü Ahmed zamanında, (1703 - 1730), Paris'e giden 28.Mehmet çelebi aracılığıyla, Dominique Cassini'nin astronomi tabloları elyazma İstanbul'a gelir. Bu eserin baş kısmında bulunan logaritma cetvelleri, zamanın güveni-lir matematikçisi Kalfazade İsmail Çınari tarafından, 3.Mustafa zamanında ilk defa 1772 yılında, tercümesi yapılan Tuhferi Behic-i Rasini Tercüme-i Ziyc-i casini adındaki kitabın baş tarafına konmuştur. Daha sonraki yıllarda da, Mahmut Şevket Paşa ve Kirkor Kömürcüven tarafından, zamanın bilim dili olan Arapça olarak logaritma cetvelleri hazırlanmıştır.

Türk - İslam Dünyasında Pi Sayısı

15. yüzyıl Türk-İslam Dünyası ünlü matematik ve astronomi alimi, Giyasüddin Cemşid, sayısının değerini, 16 ondalılığına kadar ve doğru olarak ilk hesaplamıştır. Gıyasüddin Cemşid'in, Risaletül fi Muhitü'l Daire adlı eserinde, sayısı için verdiği değer: pi = 3,14159 26535 89873 2'dir.

15. yüzyılda, sayısının, ancak 6. ondalığa kadar olan değeri bilinmiş olduğuna, 16. ondalığa kadar doğru değerin de, Batı bilim dünyasında, Hollandalı matematikçi Adriaen van Rooman tarafından, doğru olarak hesaplandığına göre, Giyasüddin Cemşid'in bu konuda da, zamanının matematiğinden 200 yıl ilerde olduğu ortaya çıkmaktadır.


Türk - İslam Dünyasında Trigonometri

İçinde bulunduğumuz yüzyılda yapılan bilimsel araştırmalar göstermiştir ki; trigonometriye ait temel bilgiler, 8. ile 16. yüzyıl Türk - İslam Dünyası matematikçileri tarafından ortaya konulmuş ve belli bir noktaya kadar da geliştirilmiştir. Bunun nedenini, şu şekilde açıklamak mümkündür. Bilindiği gibi, 8. ile 16. yüzyılda Türk - İslam Dünyası'nın hemen her yöresinde astronomi (gökbilim) çalışmaları ve bunun sonucu olarak da, yoğun bir rasathane (gözlemevi) kurma çalışmaları vardı. Bu rasathanelerdeki bilimsel çalışmalarda, astronomiye yardımcı olarak, trigonometri kullanılmaktaydı.

Astronominin temelini teşkil eden küresel astronomi, doğrudan doğruya, küresel trigonometrinin astronomiye uygulanmasından doğmuştur. Gezegen ve uydu ile yıldızların gökküresindeki yerleri (koordinatları) ve hareketleri ile ilgili hesaplamalar; küresel üçgenin, küresel trigonometriye uygulanmasıyla elde edilebilmektedir. Dolayısıyla, o devir Türk - İslam Dünyası'nda, Trigonometri müstakil bir bilim haline gelmiş ve oldukça gelişmiştir.

8. ile 16. yüzyıl Türk-İslam Dünyası matematik ve astronomi bilginlerinin hazırlamış oldukları "Ziyc" adlı eserin hepsinde, bugünkü trigonometrinin temel bilgileri, ilk olarak ortaya konulmuştur. Gene bu devir Türk - İslam Dünyası bilginleri, Batlamyos'un (Claidius ptolemeios 85-160) ünlü eseri, değişik tarihlerde değişik matematik ve astronomi bilginleri tarafından mıcıstı (almagesti) adıyla şerh edilmiştir. Bu şerhlerde de, yer yer trigonometri bilgileri zenginleştirilip geliştirildi.

Gıyasüddin Cemşid ve Trigonometri Gıyasüddin Cemşid, 1 derecelik yayın sinüs değerini, bugünkü değerlere göre 18 ondalıklı sayıya kadar doğru olarak hesaplamıştır. Bu konuda 1 derecelik yayın sinüsüsünü geometri ve cebir yoluyla hesaplamış ve böylece trigonometrik tabloların tanzim işini sistemle bir esasa bağlamıştır. Dolayısıyla kendisinden sonra gelen İslam Dünyası ie Batı Dünyası matematikçilerine, zamanında orjinal olan yeni bilgi hazineleri bırakmıştır.


Türk - İslam Dünyasında Analitik Geometri Hârizmî ve Analitik Geometri Hârizmî tarafından 830 yılında yazılan Cebri ve'l Mukabele adlı eserin ikinci bölümü; ikinci dereceden tam olmayan denklemlerin geometrik çözümünü konu edinir. Her tip denklem için, iki ayrı çözüm yolu gösterilmiştir. Bu çözüm yollarından birincisi geometrik çözüm yolu olup, bu çözüm yoluna "kare dikdörtgen metodu" denmektedir. Bu tür çözüm şeklini, Eski Mısır, Mezopotamya,eski Yunan ve Eski Hint matematiğinde görmek mümkün değildir. Hârizmî'nin bu çözüm şekli, matematikte cebir ve geometri arasında, bir nevi yakınlık tesisini hedef tutan araştırmanın ilk ürünüdür. Hemen belirtmek gerekir ki, matematik tarihi eserleri, analitik geometriyi Fransız matematikçisi Descartes ile başlatır. Konun gerçek yönü şudur: Hârizmî, Descartes'ten tam 1000 yıl analitik geometriye ait uygulamanın ilk örneklerini vermiştir.

Ömer Hayyam ve Analitik Geometri Ömer Hayyam denklem konusu ile de çok önemli çalışmalar ortaya koymuştur. Birçok cebir denklemlerinin çözümünü geometrik olarak açıklamıştır. Hayyam, kübik denklemlerin kısmi çözüm şekillerini, sistematik bir şekilde tarif ve tasnif etmiş ve birçok denklemleri geometri olarak çözmeyi başarmıştır. Fransız matematikçi Descartes'ten 1000 yıl önce Hârizmî, 600 yıl önce Ömer Hayyam tarafından, analitik geometriye ait zamanı için orjinal problem ve çözüm yolları ortaya konmuştur. Analitik geometrinin Descartes'le olan ilgisini şu şekilde belirtmek gerçeğin tam ifadesi olsa gerekir. Fransız matematikçi ve filozof Descartes, mevcut analitik geometri bilgilerini, tarif ve tasnif ederek sistemleştirmiş, aynı zamanda da kısmen genişletmiştir.


Aritmetik'in Tarihsel Gelişimi

Aritmetikten Matematiğe Matematiğin; en geniş ve en iyi bilinen dalı aritmetiktir. Aritmetikte, çoğu zaman deney ve muhakeme ile sonuçlar elde etmek mümkündür. Matematik ise, tümdengelime dayalı, daha zor problemleri çözmede geleneksel matematikle birlikte kullanılır. Yüzyıllar boyu süregelen gelişmeler ve bunun sonucu olarak matematiğin kapsamı, insanların düşünce sınırını aşmıştır. Aritmetik, matematiğin çeşitli dallarından biridir.

Bugünkü matematik, 544 dala ayrılmıştır. Bunlardan birkaçının daha fazlasının hakkında gelebilecek bir matematikçi düşünülümez. Bu 544 daldan, herhangi birinin iyice incelenmesi dahi, bir matematik dehasını, bütün ömrü boyunca meşgul edebilir. Öyleki; matematiğin hepsini, belli bir sürede bir kimsenin bilmesi ve öğrenmesi mümkün değildir. Çünkü, matematik üçyüz yıldır hızla gelişmekte, aynı zamanda da derin ve geniş konuları içermektedir. Ayrıca, yılın her gününde, bir insanın bir günde öğrenebileceğinden çok daha fazla, yeni matematik buluşları ortaya konmaktadır. Gerçekten, son elli yıl içinde keşfedilenler, insanlığın varlığından bu yana geçen binlerce yıl içinde bulunanlardan kat kat daha fazladır.

İlkçağ Mağara İnsanı ve Aritmetik İlkçağ insanı, rakam ve sayıları kullanmak ihtiyacını duymuştur. Bu devir insanları, ihtiyaçlarını kaydedip saklamasını da biliyordu. Avladıkları hayvanın veya sürüsündeki koyunların sayılarını belirtmek için, yaşadıkları mağara duvarlarına çizikler çizmişler, bir ağaç dalına çentikler yapmışlardır. Bazen de, ipe düğüm atmışlar, veya çakıl taşlarını kullanmışlardır.

Bu devrin, 13-15 yaşlarındaki insanı, koyun ve geyik gibi varlıkları, ok gibi eşyaları sayabilmek için, ufak yuvarlak çakıl taşlarına sahip olması, veya kesilmiş bir ağaç dalı üzerine çentik yapması icap edecekti. Bir taş ya da sopa üzerinde işaretlenmiş bir adet çentik, tek koyunu ifade ederdi. Belli bir zaman sonra, eğer herbir taş veya çentik için bir koyun yoksa, o insan bir veya birkaç koyunun kayıp olduğunu anlardı. Bu devrin insanları, sayıları bir yere kaydedip saklamasını da biliyorlardı.

İlkel insanlar, sayılar için kil tabletler üzerine çizikler kazmayı veya kesilmiş ağaç dalına çentikler yapmaya başlamakla, ilk defa sayıları yazılı olarak ifade etmiş oluyorlardı. İlkçağ insanının kullandığı bu işaretler, rakam ve sayıların ilk yazılı ifadeleridir.

Bunların yanında; ilkel insanlar sayıları belirtmek için, değişik ses ve kelimeler de kullanmışlardır. Bugün sayıları belirten standard hale gelmiş şekil ve sözcükler vardır. Günümüzde; sayılar, hem 1,2,3,... gibi sembollerle ve hem de; bir, iki, üç.. gibi kelimelerle ifade edilmektedir. Bugün dört adet kalemi, dört kalem kelimesi ile belirtip 4 sembolü ile gösterebiliyoruz.

Eski Mısırlılar'da Aritmetik Bilinen en eski sayma sistemlerinden biri, Eski Mısırlılar'a ait olanıdır. Eski Mısırlılar'ın kullandıkları resim yazısının (hiyeroglif) başlangıç tarihi, M.Ö. 3300 yılına kadar gider. Böylece, Mısırlılar yaklaşık 5300 yıl önce, milyona kadar olan sayıları kapsayan bir sistem geliştirmişlerdir. Eski Mısırlılar'a ait sayma sistemi, ilkçağ mağara insanının önceleri kullandığı sayma sisteminin gelişmiş şeklidir.

Eski Mısır aritmetiği hakkında bildiklerimiz, zamanımıza kadar intikal etmiş papirüs tomarlarından elde edilmektedir. Bugün bu papirüsler; bilim tarihinde M.Ö. 1900-1800 yılları için adlandırılan, Kahun ve Berlin papirüsleri ile, M.Ö. 1700-1600 yılları için adlandırılan Hiksoslar devrinden kalma Rhind ve Moskova matematik papirüsleridir. Mısır matematiği hakkındaki diğer kaynaklar, birkaç parşömen tomarı ile kil ve tahta tabletlere dayanmaktadır. Eski Mısır'da rakam ve sayılar bazı sembollerin yan yana gelmesiyle ortaya çıkıyordu. Bütün rakamlar, 7 değişik şeklin biraraya gelmesiyle ifade ediliyordu. Örneğin, 1 için yukardan aşağıya düşey bir çizgi, 10 için at nalı şekli, 100 için çengel işareti, 1000 için lotus çiçeği, 10000 için işaret parmağı, 100000 için tatlı su balığı, 1000000 için tatlı su balığı şekillerini kullanmışlardır ve yazım biçimi de sağdan sola doğru ifade ediliyordu.

Sayıları da, sembollerle göstererek bir sayı sistemi geliştirmişlerdir. Eski Mısırlılar 1'den 1 milyona kadar olan sayıları göstermek ve yazmak için değişik semboller kullanmışlardır. Örneğin, 9 sayısını ifade etmek için, 9 adet düşey çizgi; 90 sayısını ifade etmek için, 9 adet at nalı, kullanmak gerekiyordu.

Eski Mısırlılar, bu sembolleri, gerektiğinde tahta, ağaç ve taş üzerine de oymuşlardır. Bu rakamları, birkaç kez kullanarak, istenilen sayıları göstermişlerdir. Bu sistemde; gruplamalar onarlık olduğundan, sistem onluk sistemdir. Eski Mısır Sistemi, aşağıda belirtilen özelliklerinden dolayı, mağara insanının kullandığı sistemin geliştirilmiş şekliydi.


Bir kümede, bulunan şeylerin toplam sayısı, sadece bir tek sembolle belirtilmiştir. Örneğin, 10 sayısının bir topuk kemiği sembolü ile belirtilmesi gibi...

Diğer sayıları göstermek için, aynı semboller tekrarlanmıştır.

Bu sistemde onluk gruplar esas alınmıştır. On düşey çizgi, bir topuk kemiği sembolünü, en topuk kemiği sembolü de, bir çengel sembolüne eş değerdir. Bu şekilde devam eder. Eski Mısırlılar sıfır kavramını da bilmiyorlardı ve sıfırı gösterecek bir işaret kullanmamışlardı. Fakat, sayıları çarpma ve çıkarma tablolarına, ehramların yapılış tarihinden itibaren sahip bulunuyorlardı.

Afet İnan, Eski Mısır Tarih ve Medeniyeti adlı eserinde şunları yazar: Mısır'da rakamların yazılışını çok eski zamanlardan itibaren bulmak mümkündür. IV. sülale zamanında (M.Ö. 2778 - 2413) Methe'nin mezarında bulunan yazılarda ölçü sistemlerinin mükemmel bir şekilde tespit edildiği de anlaşılıyor.

Kaynaklar, XII. sülale zamanından (M.Ö. 2000-1787) kalma, bir takım aritmetik problemlerini açıklayan papirüsler ele geçtiğini, bunların bugün, Kahun, Moskova, Berlin ve Rhind papirüsleri diye adlandırıldığını belirtir. Afet İnan, adı geçen eserinde, bu konuda şu bilgileri de verir: Bu papirüs metinlerinde, birçok matematik ve geometrik esaslar, ilmi bir şekilde konulmuştur. Bilhassa, Rhind papirüsü, Mısır matematiğinin bir abidesi sayılır. Bu türlü vesikalarda, ölçülerin ne gibi esaslara göre yapılacağı, örneklerle mevcuttur. Ehramlar, doğrudan doğruya bir geometrik problemin tatbik edilmiş şeklidir. Bunlardan başka, diğer yapılar da bu hesaplara göre yapılmıştır. Mısırlılar Pisagor teoreminin yalnız 3, 4, 5 özel halini yani kenarları 3, 4, 5 olan bir üçgenin, bir dik üçgen olduğunu biliyor ve bundan inşaat ve ölçü işlerinde faydalanıyorlardı.

Hemen belirtmek gerekir ki, Eski Mısırlılar'ın hayatı, Nil Irmağı'nın yükselme ve alçalmasına bağlı olduğundan, bu durumu daima ölçmek ve kontrol etmek lazımdı. İşte bu hesaplar ve arazi ölçülerinden dolayı, Eski Mısır'da aritmetik ve geometrik ilimler büyük gelişme göstermiştir. Çünkü suyun yükselme ve alçalmasıyla, şahıslara ait arazi üzerindeki sınırlar bozuluyor ve bunları belirli ölçülere göre, yeniden tespit etmeleri gerekiyordu. Bu sebebten büyük bir itina ile gerekli ölçme ve hesaplamalar yapılmıştır.

Aydın Sayılı, Mısırlılar'da ve Mezopotamyalılar'da, Matematik, Astronomi ve Tıp adlı eserinde bu konuda şunları yazar: Mısır rakamları, oldukça ilkel bir vasıf taşımalarına rağmen bunlar tarihte bilinen ilk ve en eski rakamlar arasında bulunmakla, büyük bir değer ve önem taşırlar. Çünkü bunlar belirli sembollerle ifade edilmesi, zihniyet ve düşüncesinin ilk örneklerinden, belki sadece Sümerliler istisna edilirse, en eskisini teşkil etmektedir.

Eski Yunan'da Aritmetik Kaynaklar, aritmetik denilince, temel bilgilerin, eski Yunan, Roma çağı aritmetikçisi Diofantos (325-400) ile başladığını belirtir. Bilinen tarihi bir gerçek şudur: Bugünkü aritmetiğin, temel bilgilerinin, ilkel anlamda da olsa, Mezopotamya'da var olduğu anlaşılmıştır. Pisagor teoreminin hem özel hem de genel halinin, Babil çağında bilimiş olduğu, Mezopotamyalılardan, zamanımıza intikal eden belgelerden görülmektedir. Tarihçi Heron da Yunan matematiğinde, açık bir Mezopotamya matematiğinin etkisini bulunduğunu belirtir.

Konunun, diğer bir gerçek yönü de şöyledir: Yunanlılar, Solon devrinden itibaren, hristiyanlıktan önceki yüzyılın ortalarına kadar, sayı yazısı olarak, sayı kelimelerinin ilk harflerini kullandılar. Bu durum sonucu; birçok birler, onlar ve yüzler meydana getirilmekte, dolayısıyla da sayı yazısı ile sayı dili arasında açık bir boşluk meydana gelmektedir. Ancak, miladi 500. yılında 24 harf ile sami menşeli 3 ek işaret kullanan yeni bir sayı sistemi ortaya çıktı.

Mezopotamyalılar'da Aritmetik Mezopotamyalılarda rakamlar, çivi yazısında görülen çivi yada oduncu kamasına benzeyen şekillerden ibarettir. Bu işaretlerin (sembollerin) uygun biçimde, yan yana veya büyük sayıları gösterebilmek için toplu olarak veya tekrarlayarak grup halinde yazmak suretiyle 60'a kadar sayıları ifade edebiliyorlardı. Bu tür yazım şeklinde, 0.1 ve 0.01 ile 0.001 gibi rakamların arasındaki farkı anlamak bir hayli güçtü. Bunu anlayabilmek için; metin, konu ve karine yardımıyla sonuç çıkarma yollarına gidilirdi. Mezopotamyalılar da, sıfır sembolünü kullanmamışlardır. Ancak astronomilerinde bu maksatla, özel bir sembol kullandıkları anlaşılmaktadır.

Babil Sayma Sistemi M.Ö. 2000 yıllarında Mezopotamya'da yaşayan Babillilerin, bilimin çoğu dalında, oldukça ileri bir seviyeye ulaşmış oldukları bilinmektedir. Öyle ki; Babil şehrini zamanın bilim merkezi haline getirmişlerdir. Özellikle matematik ve astronomide çok ilerlemişlerdir.Babilliler, 59'dan büyük sayıları da, basamak düşüncesinden yararlanarak yazdılar. 60 sayısını taban olarak kullandılar. Gruplamalarını 60'lık olarak, yani 60x2 = 120, ... şeklinde yaptılar. Böylece ilk kez sayılarda basamak fikrini gösterdiler. Babiller, sayıları yazarken iki tane sembol ve bulunmayan basamaklar yerini doldurmak için de, (( : )) işaretini kullanmışlardır.

Babil rakamları arasında da, sıfır rakamını gösteren bir sembol yoktur. Rakamları sağdan sola doğru yazarak ifade ettikleri anlaşılmaktadır. Babilliler, kil tabletler üzerine sitilüs adı verilen tahta parçası ile yazarlardı. Bu tür yazıya çivi yazısı denir. Kağıt yapmayı, henüz bilmediklerinden, kilden yapılmış levhalar kullanmışlardır.

Dört Temel İşlem Toplama: Rakamları (işaretleri) yan yana yazarak yapıyorlardı.

Çarpma: Toplama işlemine benzer, çok yorucu bir yol uyguluyorlardı. Bu kadar uzun işlemlerin zorluğu karşısında, özel çarpma tabloları hazırlamışlardır.

Kesirler: Çoğu zaman kesirler, paydası birim (yani 60) olan sayı ile ifade ediliyordu. Yalnız, çok eski tarihten beri, Babil'de 1/3, 2/3, 5/6 gibi bir çok basit kesirlerin kullanıldığı da anlaşılmaktadır.

Ondalık Kesirlerin Avrupa'da Görülmesi Bilim tarihinde, Doğu bilim dünyasında Arapça ve Farsça olarak yazılan eserlerin batı dillerine çevrilmesi sonunda 12. ile 16. yüzyıllar Tercüme Yüzyıl olarak gösterilir. Bu durum sonucudur ki; Batı bilim dünyasında tam sayıların ondalık kesirler olarak gösterilmesi konusunda ilk eser Fransezko Pelles tarafından hazırlanmıştır. Bu eser, 1492 yılında Torino'da yayınlanan Ticari Hesaba Dair eserdir. Pelles, ilgili eserinin ikinci cildinde, ondalık kesirlerde virgül işaretini kullanmıştır. Gıyasüddin Cemşid ise Risalet - ül Muhitiyye adlı eserinde, ondalık kesirlerde virgül kullanmayarak, sayının tam kısmının üzerine sıhah kelimesi koymak suretiyle, sayının ondalık kısmını tam kısmından ayırmıştır. Gıyasüddin Cemşid'de görülen bu tür gösterim şekli, Pelles'in yukarda belirttiğimiz eserinden ortalama seksen yıl öncelerine rastlanmaktadır.

Romalılar'da Aritmetik Romalılar, Eski Mısırlıların yıllarca önce yaptıkları gibi, önceleri, bazı sembolleri tekrarlayarak sayıları yazarlardı. (Örnek 1). Sonraları da, çıkarmadan yararlanarak, daha kısa yazma yollarını ortaya koydular (Örnek 2).

Örnek 1: XXXXX = 50 MDCLXVI = 1000 + 500 + 100 + 50 + 10 + 1 = 1666 DLXIII = 500 + 50 + 10 + 1 + 1 + 1 = 563

Örnek 2: XC = 100 - 10 = 90 IX = 10 - 1 = 9

Başlangıçta değişik bazı sembol ve harfleri, rakam olarak kullanmışlardır. Bu rakamları, ilk olarak Romalılar kullandıkları için, aritmetikte Roma Rakamları ya da Romen Rakamları olarak adlandırılır. Kaynaklar, Roma rakamlarının bir elin parmaklarından esinlenerek ortaya konduğunu belirtir. Romalılar, bugün kullandığımız l, 2, 3, 4 rakamları yerine I, II, III, IIII sembollerini ve 5'i belirtmek için de, V şeklinde bir el işaretini sembol olarak kullandılar. 10'u belirtmek için de V sembolünü, değişik biçimde iki kez kullanarak X sembolünü elde ettiler. (Çaprazlanmış iki düşey çizgi.) Diğer rakamları da alfabelerindeki harflerden aldılar. Romalılar sayıları belirtmek için, 7 ayrı harfi rakam olarak kullanmışlardır. Aşağıdaki tabloda, Roma rakamları gösterilmiştir.

Roma Sayma Düzeni I V X L C D M Onluk Sayma Düzeni 1 5 10 50 100 500 1000


Roma rakamlarına dayalı, Roma sayma düzenine göre, toplama ve çıkarma işlemlerinin yapılmasında, bazı temel özellik ve sınırlamalar vardır. Bunları özetlersek:


Toplama İşlemindeki Özellik ve Sınırlamalar Yanyana yazılan ve aynı sembolü gösteren, iki ya da üç temel rakam birbiriyle toplanarak, toplama karşı gelen sayı elde edilir.

III = 1 + 1 + 1 = 3 XX = 10 + 10 = 20 (Bu rakamların yazılışları ile ilgili önemli özellik : I, X, C sembolleri yanyana, 3'ten fazla; V, L, D, M sembolleri de, 1'den fazla yazılamaz.)

Büyük rakamların sağına yazılan küçük rakamlar, kendisi ile toplanarak toplama karşı gelen sayı elde edilir.

XV = 10 + 5 = 15 DLXI = 500 + 50 + 10 + 1 = 561

Küçük değerleri gösteren semboller (rakamlar), büyük değerleri gösteren sembollerin sağına yağıldığında, bu değerler toplanarak toplama karşı kelen sayı elde edilir. MDCLXVI = 1000 + 500 + 100 + 50 + 10 + 5 + 1 = 1666 DLXI = 500 + 50 + 10 + 1 = 561

Çıkarma İşlemindeki Özellik ve Sınırlamalar

5 ile başlayan V, L, D sembolleri, çıkarma amacı ile, kendinden büyük değer belirten sembollerin soluna yazılmaz.

Bir sayı, ancak aşağıdaki durumlarda çıkarılabilir.

I sadece V ve X den çıkarılabilir. X sadece L ve C den çıkarılabilir. C sadece D ve M den çıkarılabilir.

Küçük değerli semboller, büyük değerli sembollerin, soluna yazıldığında, büyük değerden küçüğü çıkarılır, bu fark sayıyı verir.

IX = 10 -1 = 9 XL = 50 -10 = 40

İki büyük değerli sembol (rakam) arasına yazılan küçük değerli sembol, sağındakinden çıkarılmak suretiyle, sonuca denk gelen sayı elde edilir.

CXL = 140 LIX = 59

Görülüyor ki; Roma sayma düzeni, sadece toplama ve çıkarma işlemine dayanmaktadır. Sıfır ve basamak sistemi (kavramı) yoktur. Bu nedenle, aritmetik işlem yapmaya uygun değildir. Şöyle ki : Roma'da Forum Meydanı'ndaki süslü hitabet kürsüsünün Columna Restrata sütünunda 2.200.000 sayısını belirtmek için yirmi iki adet yüz bin i gösteren sembol (sayı işareti) oyulmuştur. Roma rakamları bu özellikleri dolayısıyla; bugün matematik işlemleri yapmak amacıyla kullanılmamaktadır. Ancak, çok sınırlı olan, bazı özel gösterimler için kullanılmaktadır.

Türk-İslam Dünyası'nda Aritmetik Aritmetikte temel işlem olarak adlandırılan; toplama, çıkarma, çarpma, bölme ve kesirli ifadelerle ilgili bilgiler, ilkel şekliyle, Eski Mısır ve Mezopotamya'da vardı. Bu bilgiler, uzun zaman aralığı içinde gelişerek, bugünkü kullanılabilir ve sistemleşmiş durumunu almıştır. Matematik tarihinde; aritmetikte, ondalık sayılarda virgül kavramı ile, tam sayı kavramında sıfır rakamının kullanılması çok önemli bir olaydır.

Bilim tarihi eserleri, ondalık sayı kavramında önemli yeri olan virgül kullanma şerefinin, 15. yüzyıl Türk-İslam Dünyası matematik ve astronomi alimi Gıyasüddin Cemşid'e ait olduğunu belirtir. Gıyasüddin Cemşid tarafından hazırlanan Risalet'ül Muhitiyye adlı eserde, aritmetik işlemlerde ilk kez virgül kullanılmıştır.


Bilim Tarihinde Matematik

Matematikle ilgili eserler incelendiğinde;

Birinci grup olarak, Eski Yunan matematikçilerinden Thales (M.Ö. 624-547), Pisagor (M.Ö. 569-500), Zeno (M.Ö. 495-435), Eudexus (M.Ö. 408-355), Öklid (M.Ö. 365-300), Arşimed (M.Ö. 287-212), Apollonius (M.Ö. 260?-200?), Hipparchos (M.Ö. 160-125), Menaleus (doğumu, M.Ö. 80) İskenderiyeli Heron (? -M.S.80) , Batlamyos (85- 165) ve Diophantos (325-400) ile bunların çağdaşlarının adları görülür.

Daha sonra, ikinci grup olarak da Batı Dünyası matematikçilerinden; Johann Müler (1436-1476), Cardano (1501-1596), Descartes (1596. 1650), Fermat (1601-1665), Pascal (1623-1662), Newton (1642-1727), Leibniz (1646-1716), Mac Loren (1698-1748), Bernoulli'ler (Bu aileden sekiz ünlü matematikçi vardır. Bunlar; Jean Bernoulli (1667-1748, Jacques Bernoulli 1654-1705, Daniel Bernoulli 1700-1782...), Euler (1707-1783), Gaspard Monge (1746-1818), Lagrange (1776-1813), Joseph Fourier (1768-1830), Poncolet (1788-1867), Gauss (1777-1855), Cauchy (1789-1857), Lobaçevski(1793-1856), Abel (1802-1829), BooIe (1815-1864), Riemann (1826-1866), Dedekind (1831-1916), H. Poincare (1854-1912) ve Cantor (1845-1918) ile bunların çağdaşlarının adları belirtilir.

Yukarıda; birinci grup olarak belirttiğimiz; Eski Yunan (Antik çağ, Grek) matematikçileri; M.Ö. 8. yüzyıl ile M.S. 2. yüzyıl arasında, ikinci grup olarak belirttiğimiz Batı Dünyası matematikçileri ise, 16. ile 20. yüzyıl arasında yaşamışlardır: Burada akla şöyle bir soru gelmektedir. 16. yüzyıldan önceki zaman içerisinde matematik konularında hiç bir araştırma ve çalışma olmamış mıdır? Özellikle, İslamiyetin ilk yılları olan 7. yüzyıl ile 16. yüzyıl arasında yaşamış olan Türk - İslam Dünyası matematik bilginlerinin varlığı ve çalışmaları görmezlikten gelinmiştir.

Gerçek olan şu ki; Türk - İslam Dünyası matematikçileri, yukarıda birinci grup olarak adlarını belirttiğimiz Eski Yunan bilginlerinin ortaya koyup, yeterli çözüm getiremedikleri, matematik sorunlarına yeni çözümler getirdikleri gibi, bu bilime yeni sistem, kavram ve teorem kazandırmışlardır. Bu başarılarının sonucu bugünkü ileri matematiğin temelini atmışlardır. Her ne kadar, Batılı bazı bilim tarihçileri, Eski Yunan matematiğini geliştirmiş olmakla vasıflandırıyorlarsa da, son yüzyıl içinde yapılan araştırmalar, bu hükmün temelinden yanlış olduğunu ortaya koymuşlardır.

Ülkemizde, evrensel nitelikteki kendi alimlerimizin bilimsel yönlerine gereken ve yeterli önem verilmezken; Batı'da, özellikle son yüzyıl içerisinde, bilginlerimize ait yüzlerce cilt eser ve makalelerin yayınlandığı, hatta bu bilginlerimiz için, yaşadığı yüzyıllara adlar verildiği ve anma törenleri düzenlendiğini görmek mümkündür. Bunlardan birkaç örnek vermek gerekirse; dünyada ilk cebir kitabı yazanın Harezmi (Harezm 780-Bağdat 850), trigonometrinin temel bilginlerinden olan sinüs ve cosinüs tanımlarını ilk açıklayan el-Battani (Harran 858-Samarra 929) , tanjant ve cotanjant tanımları ile ilgili temel bilgileri Ebu'l Vefa (940-998), Pascal'a (Blaise Pascal 1623-1662) izafe edilen ve cebirde önemli kuralları ihtiva eden Binom Formülünün Ömer Hayyam'a (1038-1132) ait ve Kepler'in (Johannes Kepler 1570-1630) araştırmalarına rehberlik edenin İbn-i Heysem (965-1039) olduğunu belirtebiliriz. Ayrıca Sabit bin Kurra (826-901) için Türk Öklid'i bilim dünyasının en büyük alimi, Beyruni (Bruni) (973-1052) için Onuncu Yüzyıl Bilgini, ünlü Türk hükümdarı Uluğ Bey için On Beşinci Yüzyıl Bilgini, öğrencisi Ali Kuşçu için On Beşinci Yüzyıl Batlamyos'u dendiğini de belirtmek mümkündür.

Yukarıda sadece birkaçının adını belirttiğimiz 8. ile 16. yüzyıl Türk - İslam Dünyası alimlerinin eserleri, Batı'da Tercüme Yüzyılı olarak adlandırılan 12. yüzyıl başlarından itibaren, önceleri zamanın bilim dili olan Latince'ye, daha sonradan da, öteki Batı dillerine çevrilmiştir. Çevrilen bu eserlerin asılları ise, Doğu Yazma Eserleri ile zengin olan Avrupa kütüphanelerinde muhafaza edilmekte ve hala, ilgili bilim adamlarının elinde, gerektiğinde temel müracaat kitabı, ya da kaynak eser olarak değerlendirilmektedir.

Bazı kaynaklar, matematiğin kurucusu ve geliştiricisi olarak, Batı dünyası matematikçilerinin adlarını belirtir. Gerçekte; Avrupa, 8. ile 16. yüzyıl Türk - İslam Dünyası matematikçilerinin hazırlamış oldukları temel eserlerden büyük istifadeler sağlayarak, matematiği, bugünkü ileri seviyesine ulaştırabilmişlerdir. Öyle ki; Türk - İslam Dünyası matematikçileri, Batı dünyasının ilmi düşünce ve araştırma duygularını ateşleyerek harekete geçirip beslediler ve yeni bir canlılık kazandırdılar. Cebir, geometri, aritmetik ve trigonometri konularında Batı'yı kendi görüş ve keşiflerine dayanarak ilerleyebileceği seviyeye getirdiler. 16. yüzyıl sonları için İtalyan matematikçi Cordano'nun (1501-1576) adını belirtebiliriz.

17. yüzyılda; İngiliz (İskoçyalı) John Napier (1550-1617), İsviçre matematikçilerinden Gulden (1577-1643); İtalyan matematikçilerinden Cavalieri (1598-1647); Fransız matematikçilerinden René Descartes (1596-1650), Desargues (1593-1662), Blaise Pascal (1623-1662), Pierre Fermat (1601-1663); Hollandalı matematikçi Huygens'in (1629-1695) adlarını belirtebiliriz. Bu kişilerden J. Napier logaritmaya ait sistemleri ortaya koymuştur. R.Descartes de analitik geometriye ait yeni bazı temel esasları ortaya koymuş, mevcut analitik geometri bilgilerini sistemleştirmiştir. Diğer matematikçiler de, matematiğin çeşitli dallarına ait, bazı yeni temel bilgiler kazandırmışlardır.

18. yüzyılda; İsviçre matematikçilerinden; Bernouilli (Jacques I 1654-1705), Cramer (1704-1752), Leonard Euler (1707-1783), Alman matematikçilerinden Gottfried Wilhelm Leibniz (1146-1716), İngiliz matematikçilerinden lsaac Newton (1642-1727), Mac Loren (1698-1746), İtalyan matematikçilerinden Ceva (1648-1734), Riccati (1676-1754), Fransız matematikçilerinden Clairaut'in (1713-1765) adlarını belirtebiliriz.

19. yüzyıl Fransız matematikçilerinden; Joseph Louis Lagrange (1736-1813), Gaspard Monge (1746-1818), Pierre Simon Laplace (1749-1827), Joseph Fourier (1768-1830), Galois (1811-1832), Legendre (1752-1833), F. W. Bessel (1784-1846), Augustin Louis Cauchy (1789-1857), Jean Victor Poncolet (1788-1857), Poinsot (1771-1859), Brianchan (1785-1864), Dupin (1784-1873), Chasley (1793-1880), Charles Hermite (1822-1901); İtalyan matematikçilerden Carnot (1753-1823); Norveç matematikçilerinden Niels Henrik Abel (1802-1829), Alman matematikçilerden, Jacobi (1804-1851), Carl Friedrich Gauss (1777-1855), Bernhard Riemann (1826-1866), Leopold Kronecker (1823-1891), Eduard Kummer (1810-1893), Weierstrass (1815-1897); Sovyet matematikçilerinden Nikolay Ivanoviç Lobaçevski (1793-1856), Sonia Kowallewska (1850-1891); İngiliz matematikçilerden Georg Boole (1815-1864), Cayley (1821-1895), James Joseph Sylvester (1814-1897) ve İrlandalı matematikçi William Rawan Hamilton (1805-1865) adlarını belirtebiliriz. Bu kişilerden; Gaspart Monge, tasarı geometrinin; Carnot, konum geometrisinin; Newton, sonsuz küçükler geometrisini; Pascal, Huygens ve Fermat da, olasılık hesabını ve gökmekaniğini geliştirdiler.

20. yüzyıl başları için; Alman matematikçilerinden Dedekind (1831-1916), L.Fhillip Cantor (1845-1918), Fransız matematikçilerinden Henri Poincare'nin (1854-1912), ülkemizde de, Henri Poincare'nin öğrencisi Salih Zeki'nin (1864-1921) adlarını belirtebiliriz. Daha sonra gelen; Alman, İngiliz, Fransız, Amerika Birleşik Devletleri ve Sovyet Sosyalist Cumhuriyetleri Birliği, Japonya ve Hindistan ile Çin'de yetişen matematikçiler, matematiğe kazandırdıkları yeni bilgiler ile, matematiği insan zekasının en yüksek eseri haline getirmeyi başardılar.

Yapılacak kısa açıklamalardan sonra, şu gerçek ortaya çıkacaktır. Bugünkü ileri matematik ve bunun uygulama alanı olan astronomi (gökbilim) ve fiziğin temel bilgileri, uygulamaları ile birlikte, başlangıçta, Eski Mısır ve Mezopotamya'da vardı. Daha sonraları bu bilgiler, Eski Yunan, Eski Hint ve 8. ile 16. yüzyıl Türk - İslam Dünyasında ileri seviyeye gelmiştir. Bilahare 17. yüzyıl sonrası, Batı Dünyasında yapılan çalışmalar sonucunda, bugünkü "Saadet Devrine" ulaşabilmiştir. Bu gelişimde, 17. yüzyıl öncesi medeniyetlerin şeref payları inkar edilemeyecek kadar açıktır.


Diferansiyel Denklemlerin Tarihsel Gelişimi

Diferansiyel denklemler konusunda yapılan ilk çalışmalar, 17. yüzyılın ikinci yarısında, diferansiyel ve entegral hesabın keşfinden (ortaya çıkmasından) hemen sonra, İngiliz matematikçi Newton (1642-1727) ve Alman matematikçi Leibniz (1641-1716) ile başlar. Daha sonraları, matematik tarihinde büyük isim yapmış olan, İsviçreli matematikçilerden Bernouilli kardeşlerin, 18. yüzyılda da, Euler, Clairaut, Lagrance, D'Alembert. Charbit, Monge, Laplace ile 19. yüzyılda da, Chrystal, Cauchy, Jacobi, Ampere, Darboux, Picard , Fusch ve F.G. Frobenius, diferansiyel denklemler teorisini, bugünkü ileri seviyeye getiren matematikçilerdir.

Belli tip diferansiyel denklemlerin, belli şartlar altında bir çözümlerinin mevcut olmasının ispatı, diferansiyel denklemler teorisinde varlık teoremi konusunu teşkil etmekte olup, bu da, ilk olarak 1820 ile 1830 yılları arasında, Fransız matematikçi A.L. Cauchy tarafından tesis edilmiş ve daha sonra gelenler tarafından geliştirilmiştir.

Newton ve Diferansiyel Denklem İngiliz matematikçi Newton (1642-1727), diferansiyel denklemler üzerindeki çalışmalarına 1665 yılında başlamıştır. 1671 yılında yayınladığı bir makale ile, diferansiyel denklemleri 3 ayrı sınıfta göstermiştir. Bunlar:

Birinci Sınıf Diferansiyel Denklemler Bu sınıfa ayırdıkları, dy/dx tipinde olanlardır. Burada y, x'in bir fonksiyonudur veya bunun tersi de söz konusudur.

İkinci Sınıf Diferansiyel Denklemler Bu sınıfa ayırdıkları, (dy/dx) = f(x,y) tipinde olanlardır.

Üçüncü Sınıf Diferansiyel Denklemler Bu sınıftaki diferansiyel denklemler ise, kısmi diferansiyel tipinde olanlardır.

Leibniz ve Diferansiyel Denklem Alman filozof ve matematikçi Leibniz (1646-1716), diferansiyel denklemler üzerine çalışmalarına 1673 yılında başlamıştır. Bu konudaki çalışmalarını, 1684 ile 1686 yılları arasında yazdığı Aklaerudilorum adında bir eseri ile ortaya koymuştur.

Leibniz'in bu eseri, yayınlandığı yıllarda Almanya'da gereken ilgiyi görmemiştir. Fakat, İsviçre'de, Jaques ve Jean Bernouilli kardeşler tarafından, ilgiyle incelenmiştir. 1690 yılında, Jaques Bernouilli bu konuda önemli bir eser yayınlanmıştır. Yine aynı yıllarda; Leibniz ve Bernouilli kardeşler tarafından, diferansiyel üzerinde önemli araştırmalar yapmışlardır. Yeni çözüm yolları geliştirmişlerdir. Leibniz 1691 yılında; f (x,y) = f (x.g (y)) şeklinde olan diferansiyel denklemin çözümünü yapmıştır.

Euler ve Diferansiyel Denklem Alman matematikçi Leonard Euler (1707-1783), 1728 yılında, diferansiyel denklemler üzerinde geniş çalışmalar yapmıştır. Diferansiyel denklemlerin derecesini düşürme yöntemlerini geliştirmiştir. Seri çözümleri:

(1-x4)-1/2dx + (1-y4)1/2dy = 0

şeklinde olan Abel'in teoreminin cebirsel çözümünü bulmuştur. Bu çözüm, eliptik fonksiyonlarda önemli rol oynamıştır.

Euler'in Denklemi ai ler sabit olmak üzere, denklemin genel şekli:

a0xnyn + a1xn-1yn-1 + ... + an-1xy + an = q(x)

olan bu denklem, y'ye ve türevlerine göre lineerdir, fakat katsayılar değişkendir.


Lineer Cebirin Tarihsel Gelişimi

Projektif transformasyonlar, koordinatların lineer transformasyonları ile ifade olunmuşlardır. Şu halde, projektif geometriyi kavrayabilmek için geliştirilmiş lineer cebire ihtiyaç vardır. Bu gelişmeyi, Analyse Algenukus (1815) isimli eserinde, Cauchy ve determinantlar teorisinde de Jacobi verdiler. Jacobi'nin tezi ile aynı zamanda, Cayley'in ilk defa olarak, determinantların bir kare şeması tarzında, yazılışında kullanılan ve büyük önem taşıyan tezi intisar etti.

İngilizlerden; Cayley, Sylvester, Smith, Almanlardan; Kronecker, Frobenus ve Fransızlardan Hermite'nin beraber çalışmaları ile Lineer Cebir, yani matrislerle hesap yapma, Basit Bölenler Teorisi kuadratik formların transformasyonları gibi hesaplamalar, 1850 ile 1880 yılları arasında belirli bir seviyeye gelmişti.


Logaritma'nın Tarihsel Gelişimi

Üslü olarak verilen bazı ifadelerin gerçek değerlerini, doğrudan doğruya bulmak, matematik yönünden yapılması zor bir işlemdir. Kaynaklar, bu tür, birtakım hesaplamaları, kolaylıkla yapılmasını sağlayan, logaritmayı ilk kullananı, John Napier (1550 - 1617) olduğunu göstermekte. John Napier tarafından, bu konuda Minifici Logaritmorum Canonis Descripto (bir logaritma cetveli tanımı ve iki ayrı trigonometri ile bütün matematik hesaplarında kolay ve çabuk kullanılmasına genel açıklaması) adlı, zamanın bilim dili olan Latince olarak kaleme alınmış eser, ilk kez 1614 yılında Edinburg şehrinde yayınlandı. Böylece logaritma adını da John Napier koymuştur.

Bir logaritma çizelgesinin hazırlanmasında, taban olarak 1 den büyük sayı seçilebilir. Napier, çizelgesini (e) tabanına göre hazırlamıştır. Fakat çizelgeyi tamamladıktan sonra, (e) sayısını almakla, zor bir sistem ortaya koyduğunu, uygulaması sırasında farkına vardı. Daha sonraki yıllarda, 10 tabanlı, yeni bir logaritma sisteminin hesaplama işlerinde büyük kolaylıklar sağlayabileceğini düşündü. Fakat, bu yeni sisteme ait, düşündüğü temel ilkeleri, bizzat ortaya koyamadan öldü. Ömrünün son günlerinde, arkadaşı olan, İngiliz matematikçi ve astronom Henri Briggs'ten (1551 - 1630) düşüncelerinin tamamlanmasını istedi.

Henri Biggs, bu isteğe uyarak, 10 tabanına göre, bir logaritma cetveli hazırlayarak, 1617 yılında yayımlamıştır. Bu eser, 1'den 1000'e kadar olan sayıların 14 ondalıklı logaritmalarını gösterir. Henri Briggs, ilk logaritma cetvellerinin yayımından 7 yıl sonra, yani 1624 yılında; önceleri, 1'den 20.000'e daha sonra da, 90.000'den 100.000'e kadar olan sayıların 14 ondalıklı logaritmalarını kapsayan Logaritmik Aritmetik adlı bir eser daha yayımladı.

Daha sonra, Hollandalı matematikçi Adrien Vlacq, Henry Briggs'ten eksik kalan, 20.000'den 90.000'a kadar olan sayıların logaritmik değerlerini hesap etti ve cetvellerini 1626 yılında, Briggs' in adı altında, Goude'de yayımladı. Bu yeni çizelgeler, 10 ondalıklı olup, 1'den 1.000.000'a kadar sayılan , ve 0 dereceden 90 dereceye kadar olan açıların, 1'er açı dakikası aralıklı olarak, için sinüs, tanjant ve sekantın logaritma değerlerini kapsıyordu. Ayrıca, her biri 10" için, sinüs ve tanjantın logaritmalarına ilişkin bir çizelge yayımlandı. Logaritma cetvelleri üzerine eser hazırlayanlar, Adrien Vlacq' ın bu eserini temel kabul ederler.


Türk-İslam Dünyası'nda Logaritma

Ülkemizde yazılan, matematik tarihi ile ilgili bazı kaynaklarda, Osmanlı Türkiyesi'nde, Logaritma ile ilgili ilk eserin, Osmanlı Türkiyesi'nin son matematikçilerinden İsmail Efendi (1730 - 1791) tarafından 1772 yılında yazıldığı belirtilir. Konu ile ilgili ayrıntılı bilgi veren Cevdet Paşa Tarihi'ndeki, bilgilerin yalnış değerlendirilmesi sonucu da, memleketimizde yayınlanan bazı eserlerde, İsmail Efendi logaritmayı icad etti şeklinde bilgiler verilir.

Logaritma ile ilgili ilk eserin, İskoçyalı John Napier (1550 - 1610) tarafından yayımlandığı bilinen tarihi bir gerçektir. Bu durumda, logaritma ile ilgili bilgiler, İsmail Efendi'den ortalama 80 yıl kadar önce Avrupa matematik dünyasında bilinmekte idi. Konuya biraz daha açıklık getirmek için; tarihi gelişimi içinde, ayrıntıları ile incelenmiş olan Bursalı Mehmet Tahir Efendi'nin Osmanlı Müellifleri adlı eserinde, şu bilgiler vardır: Üçüncü Ahmed zamanında, (1703 - 1730), Paris'e giden 28. Mehmet Çelebi aracılığıyla, Dominique Cassini'nin astronomi tabloları elyazma İstanbul'a gelir. Bu eserin baş kısmında bulunan logaritma cetvelleri, zamanın güveni-lir matematikçisi Kalfazade İsmail Çınari tarafından, 3.Mustafa zamanında ilk defa 1772 yılında, tercümesi yapılan Tuhferi Behic-i Rasini Tercüme-i Ziyc-i casini adındaki kitabın baş tarafına konmuştur. Daha sonraki yıllarda da, Mahmut Şevket Paşa ve Kirkor Kömürcüven tarafından, zamanın bilim dili olan Arapça olarak logaritma cetvelleri hazırlanmıştır.


Matematiğin Başlangıcı

Matematik sözcüğü, ilk kez, M.Ö. 550 civarında Pisagor okulu üyeleri tarafından kullanılmıştır. Yazılı literatüre girmesi, Platon'la birlikte, M.Ö. 380 civarında olmuştur.

Kelime manası öğrenilmesi gereken şey, yani, bilgidir. Bu tarihlerden önceki yıllarda, matematik kelimesi yerine, yer ölçümü manasına gelen, geometri ya da eski dillerde ona eşdeğer olan sözcükler kullanılıyordu.

Matematiğin nerede ve nasıl başladığı hakkında da kesin bir şey söylemek mümkün değildir. Dayanak olarak yorum gerektiren arkeolojik bulguları değil de, yorum gerektirmeyecek kadar açık yazılı belgeleri alırsak, matematiğin M.Ö. 3000-2000 yılları arasında Mısır ve Mezopotamya'da başladığını söyleyebiliriz.

Herodotos'a (M.Ö. 485-415) göre matematik Mısır'da başlamıştır. Bildiğiniz gibi, Mısır topraklarının %97'si tarıma elverişli değildir; Mısır'a hayat veren, Nil deltasını oluşturan %3'lük kısımdır. Bu nedenle, bu topraklar son derece değerlidir. Oysa, her sene yaşanan Nil nehrinin neden olduğu taşkınlar sonucunda, toprak sahiplerinin arazilerinin hudutları belirsizleşmektedir. Toprak sahipleri de sahip oldukları toprakla orantılı olarak vergi ödedikleri için, her taşkından sonra, devletin bu işlerle görevli geometricileri gelip, gerekli ölçümleri yapıp, toprak sahiplerine bir önceki yılda sahip oldukları toprak kadar toprak vermeleri gerekmektedir. Heredot geometrinin, bu ölçüm ve hesaplarının sonucu olarak oluşmaya başladığını söylemektedir.

Matematiğin doğuşu hakkında ikinci bir görüş de, Aristo (M.Ö. 384-322) tarafından ileri sürülen şu görüştür. Aristo'ya göre de matematik Mısır'da doğmuştur. Ama Nil taşmalarının neden olduğu ölçme-hesaplama ihtiyacından değil, din adamlarının, rahiplerin can sıkıntısından doğmuştur. O tarihlerde, Mısır gibi devletlerin entellektüel sınıfı rahip sınıfıdır. Bu sınıfın geçimi halk veya devlet tarafından sağlandığı için, entellektüel uğraşlara verecek çok zamanları olmaktadır. Kendilerini meşgul etmek için, başkalarının satranç, briç, go gibi oyunlar icat ettikleri gibi, onlar da geometri ve aritmeği, yani o zamanın matematiğini icat etmişlerdir.

Bu her iki görüş de doğru olabilir; rahipler geometricilerin işini kolaylaştırmak istemiş, ya da dağıtımın adil yapıldığını kontrol için, üçgen, yamuk gibi bazı geometrik şekillerdeki arazilerin alanlarının nasıl hesaplanacağını bulmuş ve bu şekilde geometrinin doğmasına neden olmuş da olabilirler.


Matematiğin Öteki Bilimlerle İlişkisi

Matematik öteki müsbet bilimlerin gelişmesini sağlar. Matematiğin öteki bilimlerle olan başka bir ilginç özelliği de; öteki bilimlerin de matematiğin bugünkü ileri seviyeye gelmesinde katkısı olmuştur. Örneğin: 17. yüzyıl başlarında, gökcisimleri yörünge hesapları sırasında, mevcut matematik bilgiler, astronomlar için yeterli olmamıştır. Netice itibariyle de, astronomların zorlamaları sonucu, matematikçiler tarafından, diferansiyel denklem kavramları ortaya konmuştur.

Fen bilimlerinden olan; fizik, kimya ve astronominin varlığı düşünüldüğünde, bu bilimlerde temel özellik, gözlem ve deneye dayalı, aynı zamanda da ölçülebilir olmasıdır. Halbuki matematik, soyut bir bilim olmakta ve temel konusu da sayılar ve çevremizde gördüğümüz şekillerdir. Matematiğin öteki bilimlerden farklarını ise, şu şekilde sıralamak mümkündür: Sembol ve şekiller kullanılır, uygulama alanı geniş, soyut ve kesin sonuç esasına dayanır, kesin kanunları vardır, kendisini devamlı yeniler, öteki bilimlerde yapılan çalışmaları kanuniyet halinde ifade edilebilir duruma getirir, var olanı inceler, kesin sonuç verir, birbirine bağımlı olarak sürekli gelişme gösterir ve gelişmeleri birbirini tamamlar.


Pi Sayısı'nın Tarihsel Gelişimi

Eski Yunan'da Pi Sayısı Kaynaklar pi sayısı için, ilk gerçek değerin, Archimedes tarafından kullanıldığını belirtir. Archimedes; pi sayısının değerini hesaplamak için bir yöntem vermiş ve pi değerini 3+1/7 ile 3+10/71 arasında tespit etmiştir. Bu iki kesrin ondalık sayı karşılığı 3,142 ve 3,1408 dir. Bu iki değer, pi sayısının, bugünkü bilinen gerçek değerine çok yakın olan bir değerdir. Ancak Archimedes'in gençlik yıllarında Mısır'da uzun bir süre öğrenim gördüğü bilinmekte.

Archimedes'in sağlığında İskenderiye'de Öklid'den ders aldığı, Öklid'in de Eski Mısır ve Mezopotamya Babil yöresinde uzun yıllar dolaşan bir matematikçi olduğu, bilinen tarihi bir gerçektir. İskenderiyeli tarihçi Herodot, metrika adlı eserinde pi sayısı için verdiği değer 3,71'dir. Bu değer, İskenderiyeli Heron'dan sonra gelen, eski Yunan ve ortaçağ matematikçileri tarafından farklı değerler kullanılmıştır. İskenderiyeli Heron'un verdiği yaklaşık değerin de, Mezopotamya menşeli olması ve Mezopotamyalılar'dan alınma takribi bir sonucu temsil etmesi muhtemeldir.


Mezopotamyalılar'da Pi Sayısı Pi sayısı üzerinde, Babilliler'in çok eski zamanlardan beri, kullanılan yaklaşık bir bilgiye sahip oldukları anlaşılmıştır. Genel olarak p=3 değerini kullanıyorlardı. Bazı tabletlerde p=3,125 değeri ne de rastlanılmıştır. Aydın Sayılı, adı geçen eserinde, Mezopotamyalılar'da, idealleştirilmiş çemberlerle üçgenlerdeki geometrik münasebetler aracılığıyla, çözümlenen problemlerde teorikleştirilmiş ve soyutlaştırılmış bir durum mevcuttur der. Böyle problemlerde sonuç hesaplanırken pi sayısı için, değerinin kullanılmış olduğunu belirtir.

Bu değeri; Mezopotamyalılar takribi sonuçlar için kullanmaktaydılar. Daha iyi yaklaşık sonuçlar elde etmek istedikleri zaman pi=3,125 değerini uygularlardı. Ancak pi sayısının; Mısırlılarınki'nden ve Susa tabletlerinin gösterdiği değerden oldukça daha iyi bir değeri, ilkin Archimedes tarafından bulunmuştur. Kaynaklar; Mezopotamyalılar, yamuk alanı hesabı ile, silindir ve prizma hacim hesaplarını bildiklerini ve pi için de 3 değerini kullandıklarını belirtir. Fakat eski Babil çağına ait olup, Susa'da bulunmuş olan tabletlerde pi için kabul edilen değerin 3,125 olduğu anlaşılmaktadır.

Bugün bir veya çok bilinmeyenli cebir denklemleriyle çözdüğümüz türden birçok problemlere Babil tabletlerinde rastlanmıştır. Mesela: Bu tablette, bir dikdörtgenin eniyle boyunu veren sayılar birbiriyle çarpılır ve bu sayılar arasındaki fark, bu çarpıma eklenirse 153 elde ediliyor. Aynı sayılar birbirine eklenirse 27 çıkıyor. Bu şeklin eni, boyu ve yüzölçümü nedir sorusu soruluyor ve cevap olarak: 20, 7 ve 140 değerleri veriliyor.


Trigonometri'nin Tarihsel Gelişimi

Eski Hint Dünyası'nda Trigonometri İçinde bulunduğumuz yüzyılın bilimsel araştırmaları, Hint Dünyasının, özellikle 6., 7., 9. ve 12. yüzyıllarda matematik ve astronomide bilimsel bakımdan üstün düzeyde ilginç çalışmaların varlığını ortaya çıkarmıştır. Eserleriyle adları zamanımıza kadar gelebilen Hint bilginleri, bilim tarihinde kendilerini etkin bir biçimde göstermektedirler. Bunlardan; belirttiğimiz yüzyıllar içinde yaşamış olan, Hint matematikçilerinden; Brahmagupta (598 -660), Aryahatha (6. yüzyil), Mahavira (9. yüzyil) ve Bhaskara'nın (1114-1158) adlarını belirtebiliriz.

Kaynaklar; Hintli matematikçilerin, özellikle trigonometri konusundaki bilgileri, müspet şekilde zenginleştirmiş olduklarını ve Mezopotamya temelli bilgileri, zamanın bilim dili olan Sanskritçe ve Pevlevice'den yapılan tercümeler yoluyla, 8. yüzyıl ortalarından itibaren İslam Dünyasına intikal etmiş olduğunu belirtir.


Eski Mısırlılar'da Trigonometri İnceleyebildiğimiz kaynaklar; Mısır matematiğinde seked ve sek kelimelerinin, bir açının kotanjantına denk anlam ifade etmesinden hareket ederek, trigonometrinin, başlangıcını eski Mısırlılara kadar götürmenin gerektiğini belirtir. Bu konuda Aydın Sayılı Mısırlılar'da ve Mezopotamyalılar'da Matematik, Astronomi ve Tıp adlı eserinde şunları yazar: Mısır'da seked dışında, bu konuda herhangi bir gelişmeye şahit olmuyoruz. Seked'e benzeyen ya da onunla aynı olan bir kavramla Mezopotamya Matematiğinde de karşılaşılmakta olduğu ve trigonometrinin başlangıcını Mısırlılara götürmek isabetli düşünce sayılmaz. Mısır Geometrisinin, Doğru Geometrisi olarak vasıf taşıdığını belirterek, müşterik Gandz'a atfen de Mısır'da Açı Geometrisinin mevcut olmadığını belirtir.


Eski Yunan'da Trigonometri Trigonometri'de: Herhangi bir ügende, dik kenarların kareleri toplamı, hipotenüsün karesine eşittir şeklinde temel bir teorem vardır. Bu teoremin adı Pisagor teoremi olarak bilinir. Gerçekte; bu teoremin varlığı, Pisagor'dan ortalama 2000 yıl kadar önceleri, Eski Mısır ile Mezopotamyalılar tarafından Babil çağında bilinmekte idi. Mezopotamyalılar, bu teoremin, hem özel hem de genel şeklini biliyorlardı. Bilim tarihi eserleri; Thales'in, Pisagor ve Öklid'in, eski Mısır ve Babil yörelerini uzun yıllar dolaşmış olduklarını belirttikleri gibi, bu bilginlerin temel matematik bilgilerini, Mısır ve Babil'den elde etmiş olduklarını belirtir.


Mezopotamyalılar'da Trigonometri İnceleyebildiğimiz kaynaklar; Mezopotamyalılar'da, temelinde geometri bulunan, bugünkü trigonometri cetvellerinin ilkel bir örneğiyle karşılaşılmakta olduğunu, ve Hipparchos'un trigonometri çalışmalarının, ilkel başlangıcının Mezopotamya Matematiğine kadar geri gitmesinin mümkün sayılabileceğini belirtmektedir. Aydın Sayılı, eserlerinde bu konuda geniş bilgi verdikten sonra, Trigonometri tarihinin, Embriyolojik Menşeinin Mezopotamyalılar'a kadar geri gittiğini ve Mezopotamyalılar'dan, Hipparchos'un bu yönden etkilenmiş olduklarını ileri sürebilir der.


Trigonometri'nin Avrupa'da Görülmesi 8. ile 15.yüzyıl Türk - İslam Dünyası matematik ve astronomi bilginlerinin hazırladıkları eserlerin hepsinde, bugünkü trigonometrinin temel bilgileri vardı. Bu durumda; bu devir Türk - İslam Dünyası'nın ünlü matematik ve astronomi bilginlerinden, Sabit bin Kurra, Beyruni, Ebu'l Vefa, Ali Kuşçu ile çağdaşlarına ait ilgili eserlerin asılları ya da tercümeleri, Johann Müller ve çağdaşları ile kendisinden önce ve sonra gelen Avrupalı matematikçilerin gözlerinden kaçmış olması düşünülemez.

Johann Müller 8. ile 15. yüzyıl Doğu bilim dünyasının ünlü yazma eserleri ile zengin bir kataloga sahip olan başta Vatikan ile diğer Avrupa kütüphanelerinden elde ettikleri, doğu bilim dünyasından intikal etmiş matematik ve astronomi ile ilgili eserlerin bir kısmını incelemiş ve zamanının bilim dili olan Latince'ye çevirmişlerdir. Bu çalışmaların sonunda De Triangulis Amnimodis Libri V. adlı bir kitap yayınlamışlardır. Bu kitap, yukarda sözünü ettiğimiz düzlem ve küresel trigonometri konularını kapsayan Latince bir eserdir. Johann Müller'in bu eseri de, ölümünden 57 yıl sonra, yani 1533 yılında Nurnberg'te yayınlanmıştır.

Bu durumda, Johann Müller'in, El-Battani'den taklid edilmiş denilen eser, kendisinin ölümünden sonra gelen çağdaşları bile, 57 yıl anlamakta güçlük çekmiş oldukları anlaşılmaktadır. El-Battani ve Ebu'l Vefa'dan 500 yıl kadar sonra, trigonometri ile ilgili bilgiler; Avrupa'da, Johann Müller ve çağdaşlarının eserleri ile 1533 yılından itibaren görülmeye ve yaygınlaşmaya başladığı açık olarak ortaya çıkmaktadır.


Türk-İslam Dünyası'nda Trigonometri İçinde bulunduğumuz yüzyılda yapılan bilimsel araştırmalar göstermiştir ki; trigonometriye ait temel bilgiler, 8. ile 16. yüzyıl Türk - İslam Dünyası matematikçileri tarafından ortaya konulmuş ve belli bir noktaya kadar da geliştirilmiştir. Bunun nedenini, şu şekilde açıklamak mümkündür. Bilindiği gibi, 8. ile 16. yüzyılda Türk - İslam Dünyası'nın hemen her yöresinde astronomi (gökbilim) çalışmaları ve bunun sonucu olarak da, yoğun bir rasathane (gözlemevi) kurma çalışmaları vardı. Bu rasathanelerdeki bilimsel çalışmalarda, astronomiye yardımcı olarak, trigonometri kullanılmaktaydı.

Astronominin temelini teşkil eden küresel astronomi, doğrudan doğruya, küresel trigonometrinin astronomiye uygulanmasından doğmuştur. Gezegen ve uydu ile yıldızların gökküresindeki yerleri (koordinatları) ve hareketleri ile ilgili hesaplamalar; küresel üçgenin, küresel trigonometriye uygulanmasıyla elde edilebilmektedir. Dolayısıyla, o devir Türk - İslam Dünyası'nda, Trigonometri müstakil bir bilim haline gelmiş ve oldukça gelişmiştir.

8. ile 16. yüzyıl Türk-İslam Dünyası matematik ve astronomi bilginlerinin hazırlamış oldukları Ziyc adlı eserin hepsinde, bugünkü trigonometrinin temel bilgileri, ilk olarak ortaya konulmuştur. Gene bu devir Türk - İslam Dünyası bilginleri, Batlamyos'un (Claidius ptolemeios 85-160) ünlü eseri, değişik tarihlerde değişik matematik ve astronomi bilginleri tarafından mıcıstı (almagesti) adıyla şerh edilmiştir. Bu şerhlerde de, yer yer trigonometri bilgileri zenginleştirilip geliştirildi.

Gıyasüddin Cemşid, 1 derecelik yayın sinüs değerini, bugünkü değerlere göre 18 ondalıklı sayıya kadar doğru olarak hesaplamıştır. Bu konuda 1 derecelik yayın sinüsüsünü geometri ve cebir yoluyla hesaplamış ve böylece trigonometrik tabloların tanzim işini sistemle bir esasa bağlamıştır. Dolayısıyla kendisinden sonra gelen İslam Dünyası ie Batı Dünyası matematikçilerine, zamanında orjinal olan yeni bilgi hazineleri bırakmıştır.

Around Wikia's network

Random Wiki